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Abstract

We study properties of the functional

Floc(u,Ω) := inf
(uj)

{
lim inf
j→∞

ˆ
Ω
f(∇uj) dx

∣∣∣∣∣ (uj) ⊂W 1,r
loc (Ω,RN )

uj
∗
⇀ u in BV(Ω,RN )

}
,

where u ∈ BV(Ω;RN ), and f : RN×n → R is continuous and satisfies 0 ≤
f(ξ) ≤ L(1 + |ξ|r). For r ∈ [1, 2), assuming f has linear growth in certain
rank-one directions, we combine a result of Braides and Coscia [16] with a new
technique involving mollification to prove an upper bound for Floc. Then, for
r ∈ [1, n

n−1), we prove that Floc satisfies the lower bound

Floc(u,Ω) ≥
ˆ

Ω
f(∇u(x)) dx+

ˆ
Ω
f∞
(
Dsu

|Dsu|

)
|Dsu| ,

provided f is quasiconvex, and the recession function f∞ (defined as f∞(ξ) :=
limt→∞f(tξ)/t) is assumed to be finite in certain rank-one directions. The proof
of this result involves adapting work by Kristensen [30], and Ambrosio and Dal
Maso [8], and applying a non-standard blow-up technique that exploits fine prop-
erties of BV maps. It also makes use of the fact that Floc has a measure repre-
sentation, which is proved in the appendix using a method of Fonseca and Malý
[24].

1 Introduction
Consider the variational integral

F (u,Ω) :=

ˆ
Ω

f(∇u(x)) dx , (1.1)

where Ω is a bounded, open subset of Rn, n ≥ 2, u : Ω → RN is a vector-valued
function, ∇u denotes the Jacobian matrix of u and f is a non-negative continuous
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function defined in the space RN×n of all real N × n matrices. Throughout this paper,
we shall also assume that f satisfies the growth condition

0 ≤ f(ξ) ≤ L(1 + |ξ|r) (1.2)

for all ξ ∈ RN×n, for some constant L > 0, and some exponent 1 ≤ r <∞.
Note that it is not obvious how to define F (u,Ω) when u is a generic function

of Bounded Variation. Following a method that was first used by Lebesgue for the
area integral [32], and then adopted by Serrin [46, 47] and, in the modern context, by
Marcellini [35], we may extend the definition of F (u,Ω) by introducing the functionals

F (u,Ω) := inf
(uj)

{
lim inf
j→∞

ˆ
Ω

f(∇uj) dx

∣∣∣∣ (uj) ⊂ W 1,r(Ω,RN)

uj
∗
⇀ u in BV(Ω,RN)

}
, (1.3)

and

Floc(u,Ω) := inf
(uj)

{
lim inf
j→∞

ˆ
Ω

f(∇uj) dx

∣∣∣∣ (uj) ⊂ W 1,r
loc (Ω,RN)

uj
∗
⇀ u in BV(Ω,RN)

}
. (1.4)

These are known as Lebesgue-Serrin Extensions of F , and are important quantities not
only when we want to define F (u,Ω) for a wider class of functions u but also, for
example, when there is a lack of convexity.

Firstly suppose r ∈ [1, 2), and f has linear growth for matrices ξ = η ⊗ ν, where
η ∈ span{u(y) : y ∈ Ω}, ν ∈ RN . We shall show that Floc satisfies the upper bound

Floc(u,Ω) ≤ C(L n(Ω) + |Du|(Ω)) .

We do this by first obtaining the upper bound for specific types of functions of Spe-
cial Bounded Variation via mollification and a covering argument, and then using a
technique Braides and Coscia to extend this result to general functions of Bounded
Variation.

Now suppose in addition that f is quasiconvex. That is, it satisfiesˆ
Rn

[f(ξ +∇φ(x))− f(ξ)] dx ≥ 0

for all ξ ∈ RN×n and all test functions φ ∈ W 1,∞
0 (Rn;RN). Then, for r ∈ [1, n

n−1
), we

prove that Floc satisfies the lower bound

Floc(u,Ω) ≥
ˆ

Ω

f(∇u(x)) dx+

ˆ
Ω

f∞
(
dDsu

d|Dsu|

)
d|Dsu| ,

where ∇u is the density of the absolutely continuous part of the measure Du with
respect to Lebesgue measure, Dsu is the singular part of Du, dDsu

d|Dsu| is the Radon-
Nikodým derivative of the measure Dsu with respect to its variation |Dsu|, and f∞

denotes the recession function of f , defined as

f∞(ξ) := lim sup
t→∞

f(tξ)

t
.
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In order to obtain this result, we need to assume additionally that f∞ is finite in certain
rank-one directions. That is, for a given u ∈ BV(Ω;RN),

f∞(u(y)⊗ ν) <∞ for L n-a.a. y ∈ Ω and all ν ∈ Rn .

This is a natural assumption, since otherwise f∞(dDsu/d|Dsu|) may just be infinity
for general BV functions.

In fact, the results in this paper also enable us to show that there can be no non-
negative quasiconvex function of genuinely r growth for 1 < r < n

n−1
for which f∞

is finite in all rank-one directions. That is, if f is quasiconvex and satisfies (1.2) for
1 ≤ r < n

n−1
but has linear growth for all matrices ξ where rank(ξ) ≤ 1, then f must

in fact have linear growth in all directions.
The proof of this latter lower semicontinuity result also requires us to have shown

that when r ∈ [1, n
n−1

), the functional Floc(u, ·), if finite, is representable by a Radon
measure on Ω. This involves adapting a result of Fonseca and Malý in [24], and is
proved in the appendix.

Throughout the course of this paper, we shall use C to denote a generic positive
constant which may not be the same from line to line. We shall specify what C is
dependent on in cases where it may not be entirely clear. Moreover for conciseness we
will often just refer to the Radon-Nikodým derivative dDsu

d|Dsu| of a BV map u as simply
Dsu
|Dsu| (and similarly Du

|Du| ), and likewise we will often just write |Dsu| instead of d|Dsu|
when integrating with respect to this measure.

We shall now provide a short background for the results contained in this paper.

1.1 Lower semicontinuity and relaxation in Sobolev Spaces

The classical lower semicontinuity result for quasiconvex integrands states that if the
integrand f is quasiconvex and satisfies (1.2) for some exponent r, then F is lower
semincontinuous in the sequential weak topology of W 1,r(Ω;RN). This was first
proved by Morrey without growth conditions, in the setting of W 1,∞(Ω;RN) and
weak* convergence [38, 39], with refinements made most notably by Meyers [37],
Acerbi and Fusco [1], and Marcellini [34].

More recently, progress has been made to refine this result by considering conver-
gence in Sobolev Spaces below the growth exponent of f : keeping the same assump-
tion of quasiconvexity and the growth condition (1.2), sequential weak lower semicon-
tinuity in W 1,q(Ω;RN) for q > rn−1

n
(q > 1) was proved by Fonseca and Malý in

[33, 24]. Previously, work by Marcellini in [35], and by Carbone and De Arcangelis in
[18] established lower semicontinuity for q > r n

n+1
by imposing additional structural

conditions on f . Fonseca and Marcellini obtained a proof in the case q > r − 1 [25],
and Malý for q ≥ r−1: both these results require further assumptions on f in addition
to quasiconvexity.
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Let us consider the minimisation problem

m := inf

{ˆ
Ω

f(∇v(x)) dx : v ∈ W 1,r(Ω;RN) , v = g on ∂Ω

}
. (1.5)

As is well known, lower semicontinuity results relate straightforwardly to the prob-
lem of existence of minimisers when we assume that the integrand f satisfies a “q-
coercivity” property such as

f(ξ) ≥ c0|ξ|q − c1 (1.6)

for all ξ ∈ RN×n, when q ≥ r. We remark that such coercivity conditions may in fact
be weakened for such purposes. However, when q < r it is possible that the limit map
u ∈ W 1,q(Ω;RN) of a minimising sequence (uj) ⊂ W 1,r(Ω;RN), although it satisfies

ˆ
Ω

f(∇u) dx ≤
ˆ

Ω

f(∇v) dx for all v ∈ W 1,r(Ω;RN) ,

is not in W 1,r(Ω;RN) and hence not a solution of (1.5). Indeed, due to the Lavrentiev
Phenomenon, it need not even satisfy the related minimisation problem to (1.5) for
the case where admissible maps can be in the larger space W 1,q(Ω;RN). That is, it is
possible that

ˆ
Ω

f(∇u) dx > inf

{ˆ
Ω

f(∇v(x)) dx : v ∈ W 1,q(Ω;RN) , v = g on ∂Ω

}
.

In this case, we may relax the problem (1.5): following a similar method to the defini-
tion of Floc above, for u ∈ W 1,q(Ω;RN) we may take the Lebesgue-Serrin Extension

F r,q(u,Ω) := inf
(uj)

{
lim inf
j→∞

ˆ
Ω

f(∇uj) dx

∣∣∣∣ (uj) ⊂ W 1,r(Ω,RN)
uj ⇀ u in W 1,q(Ω,RN)

}
.

Key results concerning properties of such functionals may be found in work by Bou-
chitté, Fonseca and Malý (see [15, 24] - in fact they consider more general integrands
of the form f = f(x, u,∇u)). Equipped with this definition, we may consider the
relaxed problem

m̄ := inf

{
F r,q(v,Ω) : v ∈ W 1,q(Ω;RN) , v = g on ∂Ω

}
. (1.7)

Now suppose that f is a quasiconvex integrand satisfying the “non-standard” growth
condition

c0|ξ|q − c1 ≤ f(ξ) ≤ c2(1 + |ξ|)r

for 1 < q < r < ∞. If, as discussed above, we have established that the varia-
tional integral F (·,Ω) is sequentially weakly lower semicontinuous when the sequence
(uj) ⊂ W 1,r(Ω;RN) converges to u ∈ W 1,r(Ω;RN) weakly in W 1,q(Ω;RN), it fol-
lows that F r,q(·,Ω) agrees with F (·,Ω) on W 1,r(Ω;RN), and we may say that it is
indeed an extension of the original variational integral.
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In addition, since f is q-coercive, it can straightforwardly be shown that F r,q(·,Ω)
is lower semicontinuous in the sequential weak topology of W 1,q(Ω;RN). Hence a
minimising sequence (uj) ⊂ W 1,q(Ω;RN) approximating m̄ in (1.7) (that is, satisfying
F r,q(uj,Ω) → m̄) converges weakly (taking a subsequence if necessary) to a limit
map u ∈ W 1,q(Ω;RN), which thus satisfies

F r,q(u,Ω) = m̄ ,

meaning that u is a solution to the relaxed problem (1.7). Regularity results for qua-
siconvex integrands satisfying such non-standard growth conditions may be found in
recent work by Schmidt [44, 45].

1.2 Lower semicontinuity and relaxation in BV
Let us consider again the coercivity property (1.6): when q = 1, it is very hard to
prove that a minimising sequence of F is relatively compact in the weak topology of
W 1,1(Ω;RN). Therefore in this case it is useful to prove lower semicontinuity without
assuming that maps ∇uj converge weakly in L1(Ω;RN) to ∇u. This was done by
Dal Maso in the scalar (N = 1) case [19]; in the vector-valued case for f convex,
results have been obtained, for example, by Reshetnyak [41], Ball and Murat [14],
and Aviles and Giga [13]. For the quasiconvex case, a first result in this direction
was obtained by Fonseca in [23], who proved that if f is quasiconvex and satisfies
linear growth conditions - i.e. (1.2) for r = 1, then lower semicontinuity obtains for a
sequence (uj) ⊂ W 1,1(Ω;RN) converging strongly inL1(Ω;RN) to u ∈ W 1,1(Ω;RN),
provided the (uj) are also bounded in W 1,1(Ω;RN). Subsequently, the hypothesis of
boundedness in W 1,1(Ω;RN) was removed by Fonseca and Muller in [26].

Nevertheless, such results these are not satisfactory for most applications, since
most existence theorems for functionals with linear coercivity conditions involve the
space BV(Ω;RN), of functions u ∈ L1(Ω;RN) whose distributional derivative can
be represented by a matrix-valued Radon measure in Ω. The main reason for this is
because it has better compactness properties. Hence, as mentioned above, we intro-
duce the Lebesgue-Serrin Extension Floc as defined in (1.4): the properties of such a
functional in the case where f is quasiconvex, has linear growth, and r = 1 have been
studied extensively by Ambrosio and Dal Maso [8], and Fonseca and Müller [27] (in
the latter, the case of general integrands f = f(x, u,∇u) of linear growth is treated).
Most notably they prove that for every open set Ω ⊂ Rn and every u ∈ BV(Ω;RN)
we have

Floc(u,Ω) =

ˆ
Ω

f(∇u(x)) dx+

ˆ
Ω

f∞
(
Dsu

|Dsu|

)
|Dsu| .

This result provided one of the main motivations for the lower semicontinuity result
in this paper. In this connection see also Rindler [42] for a proof that avoids the use
of Alberti’s rank-one theorem. This integral representation in the convex case was
proved earlier by Goffman and Serrin in [29]. Other related material appears in work
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by Aviles and Giga [13], Ambrosio, Mortola and Tortorelli [11], Ambrosio and Pallara
[12], and Fonseca and Rybka [28].

1.3 Superlinear growth conditions in the BV setting
The majority of previous results concerning lower semicontinuity in BV of quasicon-
vex integrals concern integrals f that satisfy linear growth conditions. Let us now turn
our attention to superlinear growth conditions: in [30], Kristensen shows that when f
is quasiconvex and satisfies the growth condition (1.2) for r ∈ [1, n

n−1
), Floc satisfies

the lower bound
Floc(u,Ω) ≥

ˆ
Ω

f(∇u) dx , (1.8)

whenever u ∈ BV(Ω;RN), where again∇u is the density of the absolutely continuous
part of the measure Du with respect to Lebesgue measure. The final result presented
here may be seen as an extension of this work: indeed some elements of the proof
come directly from Kristensen’s paper. In [48], a lower semicontinuity result in the
sequential weak* topology of BV is obtained for 1 < r < 2. Hence, for n > 2, we
can take r > n

n−1
. This result requires us to assume additionally that the maps (uj)

are bounded uniformly in Lqloc for q suitably large, as well as, for technical reasons, an
additional regularity requirement on the limit map u.

Acknowledgements. The author is thankful for the support of the Oxford Centre for
Nonlinear PDE (OxPDE) through the EPSRC Science and Innovation award EP/E035027/1,
and of the Ludwig-Maximilians-University, Munich. He is also grateful to Jan Kris-
tensen for numerous helpful discussions, and an anonymous referee for reading a pre-
liminary version of the manuscript and providing thorough feedback with many useful
comments.

2 Functions of Bounded Variation
Here we shall provide a brief overview of some properties of the space of functions of
Bounded Variation that are key in the context of this paper. For a thorough treatment
of this space, we refer to the monograph of Ambrosio, Fusco and Pallara [10].

2.1 Basic properties and weak* compactness
Let Ω be a generic open set in Rn. Recall that a function u is said to be in BV(Ω;RN)
if it is in L1(Ω;RN) and its distributional derivative can be represented by a matrix-
valued Radon measure Du = (Diu

j)1≤j≤N
1≤i≤n in Ω, where Diu

j are signed Radon mea-
sures on Ω.

Now recall that if u, (uj) ⊂ BV(Ω;RN), then we say that (uj) weakly* converges
to u in BV(Ω;RN) if uj → u strongly in L1(Ω;RN), and Duj converges weakly*
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to Du in M (Ω;RN×n), where M (Ω;RN×n) is the space of N × n matrix-valued
Borel measures on Ω. Since the space of signed Radon measures on Ω is isometrically
isomorphic to the dual space of the ‖ · ‖∞-closure of compactly-supported continuous
functions on Ω, [C0(Ω;RN×n)]∗, this means

lim
j→∞

ˆ
Ω

φ dDuj =

ˆ
Ω

φ dDu ∀φ ∈ C0(Ω) .

Now we state the following compactness theorem for functions in BV. Since the Sobolev
Space W 1,1 has no similar compactness property, this gives us good justification for
the introduction of BV in the Calculus of Variations.

Theorem 2.1. Let (uj) be a sequence in BV(Ω;RN) satisfying

sup

{ˆ
A

|uj| dx+ |Duj|(A) : j ∈ N
}
<∞ ∀A ⊂⊂ Ω open .

Then there is a subsequence (ujk) converging in L1(Ω;RN) to u ∈ BV(Ω;RN). If
Ω has a compact Lipschitz boundary and (uj) is bounded in BV(Ω;RN), then the
subsequence converges weakly* in BV to u.

We remark that we may generalise the last sentence of the theorem, requiring only
that Ω is a bounded extension domain. This means that exists a linear and continuous
extension operator that extends BV functions defined on Ω into Rn in a suitably “good”
way (for further details, refer to [10]).

2.2 Mollification of BV functions
Let B denote the open unit ball in Rn and write Bε to mean the ball of radius ε > 0
centred at the origin. Let φ be a symmetric convolution kernel in Rn. That is, it satisfies
φ ∈ C∞c (B), φ ≥ 0,

´
φ = 1, φ(x) = φ(−x), and supp(φ) ⊂⊂ B. Now let (φε)ε>0

denote the family of mollifiers φε(x) = ε−nφ(x/ε). Given µ, a vector-valued Radon
measure on Ω, define the function

µ ∗ φε(x) :=

ˆ
Ω

φε(x− y) dµ(y) = ε−n
ˆ

Ω

φ
(x− y

ε

)
dµ(y)

whenever x ∈ Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}.
It is often useful to approximate BV functions with smooth functions using mol-

lification, for example in the proof of Lemma 3.3. The following proposition states
some key properties in this context.

Proposition 2.2. Let u ∈ BV(Ω;RN) and let (φε)ε>0 be a family of mollifiers.

(a) The following identity holds in Ωε

∇(u ∗ φε) = Du ∗ φε .
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(b) If U ⊂⊂ Ω is such that |Du|(∂U) = 0, then

lim
ε↘0
|D(u ∗ φε)|(U) = |Du|(U) .

(c) If K ⊂ Ω is a compact set, then for all ε ∈ (0, dist(K, ∂Ω))ˆ
K

|u ∗ φε − u| dx ≤ ε|Du|(Ω) .

2.3 Decomposition of Derivative
Using the Radon-Nikodým Theorem, for a given BV function u we may decompose
Du as Du = Dau + Dsu, where Dau is the absolutely continuous part of Du with
respect to the Lebesgue measure L n and Dsu is the singular part of Du with respect
to L n. By the Besicovitch Derivation Theorem, we may writeDau = ∇ubL n, where
∇u is the unique L1 function given by

∇u(x) = lim
%→0

Du(B(x, %))

L n(B(x, %))

at all points x ∈ Ω where this limit is finite. In fact, we do not need to take balls
of radius % in the above expression: if we have any bounded, convex, open set C
containing the origin, and write C(x, %) := x + %C, then we also obtain the same
limit when we replace all instances of B(x, %) with C(x, %). A proof of this may be
found, for instance, in [8]. By a result of Calderón and Zygmund, for any function
u ∈ BV(Ω;RN) this expression is finite at L n-almost every point of Ω.

Now recall that u is said to be approximately continuous at a point x ∈ Ω if

lim
%↘0

 
B(x,%)

|u(y)− z| dy = 0

for some z ∈ RN (which will be unique for each x). The set of points in Ω where
this property does not hold is called the approximate discontinuity set and denoted Su.
Now we specify, among these approximate discontinuity points, those that correspond
to an approximate jump discontinuity between two values along a direction ν. To do
this we introduce the notation{

B+
% (x, ν) := {y ∈ B(x, %) : 〈y − x, ν〉 > 0}

B−% (x, ν) := {y ∈ B(x, %) : 〈y − x, ν〉 < 0}

to denote the two half balls contained in B(x, %) split by the hyperplane that passes
through x and is orthogonal to ν. Let u ∈ L1

loc(Ω;RN) and x ∈ Ω. Then x is an
approximate jump point of u if there exist a, b ∈ RN and ν ∈ Sn−1 (sphere of radius 1
in Rn) such that a 6= b and

lim
%↘0

 
B+

% (x,ν)

|u(y)− a| dy = 0 , lim
%↘0

 
B−% (x,ν)

|u(y)− b| dy = 0 . (2.1)
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The triplet (a, b, ν), uniquely determined by (2.1) up to a permutation of (a, b) and a
change of sign of ν, is denoted by (u+(x), u−(x), νu(x)). The set of approximate jump
points of u is denoted Ju. It can be shown that Ju is a Borel subset of Su and that there
exist Borel functions(

u+(x), u−(x), νu(x)
)

: Ju → RN × RN × Sn−1

such that (2.1) is satisfied at any x ∈ Ju. In fact, for u ∈ BV(Ω;RN), Su is a countably
H n−1-rectifiable set and if we fix an orientation ν of Su, we have ν = νu(x) for all
x ∈ Ju. This allows us to give a characterisation of Du at all points x of Ju, namely
that it can be computed by difference of the one-sided limits u+(x) and u−(x) of u on
either side of the jump set Ju along the normal vector νu(x). More precisely, we have
the following result, attributable to Federer and Vol’pert.

Theorem 2.3. Let u ∈ BV(Ω;RN). Then Su is countably H n−1-rectifiable and
H n−1(Su \ Ju) = 0. Moreover, we have

DubJu = (u+ − u−)⊗ νuH n−1bJu

In addition, for u ∈ BV(Ω;RN), there is a countable sequence of C1 hypersurfaces
Γi, say, which covers H n−1-almost all of Su, i.e.

H n−1

(
Su \

∞⋃
i=1

Γi

)
= 0 .

2.4 Decomposition of Dsu and rank-one properties
By these above definitions and results, we are now in a position to further split Dsu
into two parts: for any u ∈ BV(Ω;RN), the measures

Dju := DsubJu , Dcu := Dsub(Ω \ Su)

are called respectively the jump part of the derivative and the Cantor part of the deriva-
tive. Hence we may now decompose Du as Du = Dau+Dju+Dcu. Notice that the
above considerations about Dau and Theorem 2.3 imply

Dju(B) =

ˆ
B∩Ju

(
u+(x)− u−(x)

)
⊗ νu(x) dH n−1(x)

and

Dau(B) =

ˆ
B

∇u(x) dL n(x)

for all Borel subsets B of Ω; for |Dju| and |Dau| we simply take the modulus of
the integrands. The Lebesgue Differentiation Theorem implies that these two com-
ponents of Du can be obtained by restrictions of Du to the points x ∈ Ω where
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% 7→ |Du|(B(x, %)) is comparable with %n (for Dau) and %n−1 (for Dju). The Cantor
part of Du has intermediate behaviour and is trickier to characterise: unlike the abso-
lutely continuous and jump parts of BV functions, the Cantor parts can only be seen
as a measure and cannot be recovered by classical analysis of the pointwise behaviour
of a functions. Indeed the Cantor-Vitali function whose distributional derivative has
no jump part and no absolutely continuous part, demonstrates that for general BV
functions u, not all of Dsu may be captured by Dju. However, it is not too compli-
cated to show that Dcu vanishes on sets which are σ-finite with respect to H n−1. We
define the proper subspace of BV(Ω;RN), called functions of Special Bounded Vari-
ation, SBV(Ω;RN), to be the space of BV functions where Dsu = Dju only. For an
introduction to this space, we refer to [5, 6, 20].

Let us now turn our attention to the quantity ξ = Du
|Du| i.e. the Radon-Nikodým deriva-

tive of the measure Du with respect to its variation |Du| given by the expression

ξ(x) =
Du

|Du|
(x) = lim

%→0

Du(B(x, %))

|Du|(B(x, %))
,x ∈ Ω.

We consider ξ(x) at the various parts of Ω that are seen by these various components
of Du. It follows straightforwardly from the basic properties described above that for
|Dau|-almost all x ∈ Ω we have

ξ(x) =
∇u(x)

|∇u(x)|
,

and for H n−1-almost all x ∈ Ju,

ξ(x) =
u+(x)− u−(x)

|u+(x)− u−(x)|
⊗ νu(x) .

Note that in this case, ξ(x) is a rank-one matrix. It is much harder to establish prop-
erties of ξ(x) for points x that are seen by the measure Dcu. In [2], Alberti proved
the famous result that ξ(x) is also rank-one for |Dcu|-almost every point. The proof of
this property is very long and involved; a simpler proof based on the area formula and
Reshetnyak continuity theorem is given in [3], but this proof only works for monotone
BV functions. These properties of ξ(x) are instrumental in the proof of Theorem 4.1,
in particular in the context of the key blow-up lemma that the last part of this section
is devoted to.

2.5 Sets of finite perimeter
Let E be a subset of Ω, and define the characteristic function 1E of E as

1E(x) =

{
1 if x ∈ E ,
0 if x ∈ Ω \ E .
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We say that a set E is of finite perimeter in Ω if 1E ∈ BV(Ω;RN). Now define the
reduced boundary of E, (∂∗E ∩ Ω), as

(∂∗E ∩ Ω) = S1E
.

Note that |D1E|(Ω) = H n−1(∂∗E ∩ Ω) for every E of finite perimeter. It is easy
to verify that this notion of perimeter coincides with the elementary one, particularly
when E is a polyhedron. In [21], De Giorgi shows that if E is a set of finite perimeter,
then there exists a sequence of polyhedra (Pj) such that |((Pj\E)∪(E\Pj))∩Ω| → 0,
and

H n−1(∂∗{u > t}) = lim
j→∞

H n−1(∂Pj ∩ Ω) .

This shows that the measure-theoretic notion of perimeter is a sensible extension of
the elementary one.

2.6 Properties of blow-up limits on the singular part
In this section we state a result from [8] that is essential to our proof of Theorem 4.1.
First let us note that when blowing up a function u ∈ BV(Ω;RN) at a point x0 ∈ Ω,
we will need to use the following identities. Let Q denote the open unit cube (−1

2
, 1

2
)n

in Rn and, consistent with the previous section, define

Q(x0, %) := {%y + x0 : y ∈ Q} .

Now for y ∈ Q and % sufficiently small, let

u%(y) := %−1u(x0 + %y) . (2.2)

It follows from basic definitions that

Du%(Q) = %−nDu(Q(x0, %)), and |Du%|(Q) = %−n|Du|(Q(x0, %)) . (2.3)

Moreover, recall that the support of a measure µ in Ω is defined by

supp(µ) = {x ∈ Ω : µ(Ω ∩B(x, %)) > 0∀% > 0} .

Theorem 2.4. Let u ∈ BV(Ω;RN), and let ξ : Ω → RN×n denote the density of
Du with respect to |Du|. Then, for |Dsu|-almost all x0 ∈ Ω we have |ξ(x0)| = 1,
rank(ξ(x0)) = 1, and

lim
%→0+

Du(Q(x0, %))

|Du|(Q(x0, %))
= ξ(x0) , lim

%→0+

Du(Q(x0, %))

%n
= +∞ . (2.4)

Let x ∈ supp(|Du|) with these properties, and write ξ(x0) = η ⊗ ν where η ∈ Rn,
ν ∈ RN , |η| = |ν| = 1. Now let

v%(y) =
%n

|Du|(Q(x0, %))
(u%(y)−m%) , (2.5)

11



where u% is defined in (2.2) and m% is the mean value of u% on Q (with respect to
Lebesgue measure). Then for % sufficiently small and for every 0 < σ ≤ 1 we have

ˆ
Q

v% dy = 0 , |Dv%|(σQ) =
|Du|(Q(x0, σ%))

|Du|(Q(x0, %))
≤ 1 . (2.6)

Moreover, for every 0 < σ < 1 there exists a decreasing sequence (%k) converging
to 0 such that (v%k) converges weakly* in BV(Q;RN) to a function v ∈ BV(Q;RN)
satisfying

|Dv|(σQ̄) ≥ σn ,

and which can be represented as

v(y) = ψ(〈y, ν〉)η (2.7)

for a suitable non-decreasing function ψ : (a, b)→ R, where

a = inf{〈y, ν〉 : y ∈ R} , b = sup{〈y, ν〉 : y ∈ R} .

In this connection see also Larsen [31], where a similar result is obtained that allows
one to even assume that |Dv|(Q) = 1 and |Dv|(∂Q) for the blow-up limit.

We will now make one remark on the proof of this theorem, which is important in
the context of the proof of Proposition 4.10. In [8], it is shown that we have

lim sup
%→0+

|Du|(Q(x0, σ%))

|Du|(Q(x0, %))
> σn . (2.8)

If this were false, then there would exist %0 > 0 such that

|Du|(Q(x0, σ%)) ≤ σn|Du|(Q(x0, %))

for all 0 < % ≤ %0. This implies that for any j ∈ N, |Du|(Q(x0, σ
j%0)) ≤ σjn|Du|(Q(x0, %0)).

Hence we obtain

|Du|(Q(x0, %0)) ≥ |Du|(Q(x0, σ
j%0))

σjn

→∞ as j →∞ ,

which is a contradiction. Hence the decreasing seqeunce (%k) in this result may be
chosen to satisfy

lim
k→∞
|Dv%k |(σQ) ≥ σn .

Now note that if C ⊂ [0,∞) is a countable set, then we may also obtain the property in
(2.8) by imposing the additional restriction % /∈ C. We do this by choosing a suitable
%0 such that σj%0 /∈ C for all j (this must hold as C is countable).

12



3 Upper bound in subquadratic growth case
In this section we obtain an upper bound for the Lebesgue-Serrin extension Floc as
defined in (1.4), where f is continuous and satisfies the growth condition (1.2) for
r ∈ [1, 2). Hence, for n > 2, f may have larger growth than in the rest of this paper.
We shall assume additionally that f has linear growth in certain rank-one directions.
That is,

0 ≤ f(ξ) ≤ C(|ξ|+ 1)

whenever
ξ = η ⊗ ν , η ∈ span{u(y) : y ∈ Ω} , ν ∈ Rn . (3.1)

The results proved here are still interesting if we assume f has linear growth on all
rank-one matrices. However in the context of the lower semicontinuity result proved
in the next section, where f is additionally assumed to be quasiconvex, we shall show
that this is too strong an assumption.

First let us collect some elemenary facts for functionals such as Floc. A key ref-
erence for general properties is [17]. For every z ∈ Rn define the translation operator
Tz by (Tzu)(x) = u(x − z) and TzΩ = {x ∈ Rn : x − z ∈ Ω} = z + Ω. For
every % > 0, define the homothety operator θ% by (θ%u)(x) = (1/%)(u(%x)) and
θ%Ω = {x ∈ Rn : %x ∈ Ω} = (1/%)Ω. The following proposition states some
important facts about F (as defined in (1.3)) and Floc that come directly from their
definitions. Note that no restriction on the exponent r is required here.

Proposition 3.1. Let u ∈ BV(Ω;RN). Let f : RN×n → R be a continuous func-
tion satisfying the growth condition (1.2) for some exponent 1 ≤ r < ∞. Then the
corresponding Lebesgue-Serrin extension F defined for this f satisfies the following
properties:

(a) F (Tzu, TzΩ) = F (u,Ω) for every z ∈ Rn,

(b) F (u+ η,Ω) = F (u,Ω) for every η ∈ RN ,

(c) F (θ%u, θ%Ω) = %−nF (u,Ω) for every % > 0.

Identical statements hold for Floc.

The next proposition shows that, provided we assume that f is coercive, then by a
straightforward diagonalisation argument and compactness properties in BV we have
that F and Floc are attained and are lower semicontinuous in the weak* topology of
BV.

Proposition 3.2. Let f be as in Proposition 3.1. Assume in addition that f satisfies,
for some constant c0 > 0,

f(ξ) ≥ c0|ξ|

for all ξ ∈ RN×n. Then

13



(a) If F (u,Ω) <∞, then the value is attained. That is, there exists a sequence (uj)

in W 1,r(Ω;RN) such that uj
∗
⇀ u in BV(Ω;RN) and

lim
j→∞

ˆ
Ω

f(∇u) dx = F (u,Ω) .

(b) If (uj) is a sequence in BV(Ω;RN) converging weakly* in BV to u ∈ BV(Ω;RN),
and F (uj,Ω) <∞ for all j, then

lim inf
j→∞

F (uj,Ω) ≥ F (u,Ω) .

Identical statements hold for Floc.

3.1 Upper bound for certain functions in SBV
We first establish an upper bound for Floc(u,Ω) for specific types of functions u in
SBV, namely those that are constant almost everywhere (and hence have absolutely
continuous part zero), whose jump set is the union of finitely many polyhedra.

Lemma 3.3. Let Ω be a bounded, open extension domain in Rn. Suppose u ∈ SBV(Ω;RN)
is such that

|∇u(x)| = 0

for L n-almost all x ∈ Ω, and that the set Ju of approximate jump points of u is
the union of finitely many polyhedra. Let f : RN×n → R be a continuous function
satisfying the growth condition (1.2) for some exponent 1 ≤ r < 2. Assume also that
it has linear growth on matrices ξ satisfying (3.1). Then

Floc(u,Ω) ≤ C
(
L n(Ω) + |Dsu|(Ω)

)
(3.2)

for some constant C > 0 dependent on f .

Proof of Lemma 3.3. We argue by mollification. Let (φε)ε>0 be family of mollifiers,
i.e. φε(x) = ε−nφ(x/ε), where φ is a symmetric convolution kernel in Rn (so it satisfies
φ ∈ C∞c (B(0, 1)), φ ≥ 0,

´
φ = 1, φ(x) = φ(−x), and supp(φ) ⊂⊂ B(0, 1)). We

wish to mollify on all of Ω: since it has a Lipschitz boundary, we can extend u onto all
of Rn so that

|Du|(Rn) ≤ C|Du|(Ω) ,

and u still satisfies∇u = 0, Ju is the union of finitely many polyhedra, and span{u(y) :
y ∈ Rn} = span{u(y) : y ∈ Ω}. Now define, for ε > 0, uε(x) := (u ∗ φε), x ∈ Ω.
Recall from Proposition 2.2 that we have

∇uε(x) = (Du ∗ φε)(x) = ε−n
ˆ
B(x,ε)

φ
(y
ε

)
dDu(y) .
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Let x ∈ Ω and consider B(x, ε): if B(x, ε) ∩ Ju = ∅, then Du = ∇u = 0 on B(x, ε),
and so

f(∇uε(x)) = f(0) . (3.3)

If B(x, ε) ∩ Ju 6= ∅, and the intersection of this ball and the jump set is just part of the
face of a single polyhedron, then, on this ball, we have

Du = Dsu = a⊗ νH n−1bJu ,

where a is just the difference of (constant) values of u on either side of the face, and ν
is a unit normal to this face in the appropriate direction. Hence we have

|∇uε(x)| =
∣∣∣∣ε−n ˆ

B(x,ε)∩Ju
φ
(y
ε

)
(a⊗ ν) dH n−1(y)

∣∣∣∣
≤ ε−nH n−1(Ju ∩B(x, ε))|a⊗ ν|

Recall that by the given finiteness condition on f∞, it follows that f satisfies the linear
growth condition

0 ≤ f(ξ) ≤ C(1 + |ξ|)
for all matrices ξ of the form η⊗ ν, where ν ∈ Rn and η ∈ span{u(y) : y ∈ Ω}. Since
a⊗ ν is of this form, we get

f(∇uε) ≤ C
(
1 + ε−nH n−1(Ju ∩B(x, ε))|a⊗ ν|

)
= C

(
1 + ε−n|Dsu|(Ju ∩B(x, ε))

)
(3.4)

Note that this inequality holds even ifB(x, ε)∩Ju = ∅. Lastly, supposeB(x, ε)∩Ju 6=
∅, and the intersection of this ball and the jump set contains more than just a face - i.e.
it contains a corner of a polyhedron and/or multiple (albeit finitely many) polyhedra.
Then we have, on this ball,

Du = Dsu =
( m∑
i=1

ξi

)
H n−1bJu

for some m ∈ N, where ξi, similarly to above, are rank-one matrices of the form
ai⊗νi corresponding to jumps ai along the unit normal vector νi of some face of some
polyhedron in this intersection. Note that H n−1(B(x, ε) ∩ Ju) is of order εn−1, so

|∇uε(x)| =
∣∣∣∣ε−n ˆ

B(x,ε)∩Ju
φ
(y
ε

)
dDsu(y)

∣∣∣∣
≤ ε−n

( m∑
i=1

|ξi|
)
H n−1(B(x, ε) ∩ Ju)

≤ Cε−1

m∑
i=1

|ξi| .
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Now use the growth condition (1.2) on f to get

f(∇uε(x)) ≤ C

(
1 + ε−r

m∑
i=1

|ξi|r
)

≤ C(u)(1 + ε−r) , (3.5)

where C(u) is a constant depending on u. Similarly to before, this inequality holds
even if B(x, ε) ∩ Ju = ∅, or if this intersection only contains just a face.

Now let B be a maximal collection of disjoint balls of radius ε/5 in Ω. That is, B
is a (finite) disjoint collection of balls, and for any other ball B′ ⊂ Ω of radius ε/5,

B′ ∩
⋃
B∈B

B 6= ∅ .

For B ∈ B, let RB denote the ball with the same centre, but of radius R
5
ε. Then (see,

for example, [36])
Ω ⊂

⋃
B∈B

5B .

For each B ∈ B, we now consider cases as above. If 10B ∩ Ju = ∅, then for each
x ∈ 5B, B(x, ε) ∩ Ju = ∅. Thus we have, from (3.3),

ˆ
5B

f(∇uε) dx = |5B|f(0) . (3.6)

If 10B ∩ Ju 6= ∅, and the intersection of this ball and the jump set is just the part of a
face of a single polyhedron, then for each x ∈ 5B, B(x, ε) is contained in 10B, and so
either B(x, ε) ∩ Ju is just part of a face or is empty. Hence, using (3.4),

ˆ
5B

f(∇uε) dx ≤ C|5B|
(
1 + ε−n|Dsu|(Ju ∩B(x, ε))

)
≤ C

(
(εn + |Dsu|(Ju ∩ 10B)

)
. (3.7)

Finally, if 10B ∩ Ju 6= ∅, and the intersection of this ball and the jump set contains
more than just a face, then for each x ∈ 5B, B(x, ε) ∩ Ju may be empty, or just part
of a face, or more than just a face. Thus we use (3.5) to get

ˆ
5B

f(∇uε) dx ≤ |5B|C(u)
(
1 + ε−r

)
≤ C(u)εn−r . (3.8)

Now let B1, B2 and B3 be the balls in B where (3.6), (3.7) and (3.8) hold respec-
tively. Then B = B1 ∪ B2 ∪ B3 and∑

B∈B1

ˆ
5B

f(∇uε) dx ≤ CL n(Ω)f(0) .
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Note that B2, since it only contains ballsB such that 10B contains the polyhedral jump
set of u (which has Hausdorff dimension n− 1), contains less than Cε1−n-many balls,
where this constant depends on the jump set Ju. Hence∑

B∈B2

ˆ
5B

f(∇uε) dx ≤ C
∑
B∈B2

εn + |Dsu|(Ju ∩ 10B)

≤ C(u)ε+ C|Dsu|(Ju ∩ Ω) .

Lastly, we observe that B3, since it only contains balls B such that 10B contains parts
of the jump set that are not faces (which has Hausdorff dimension at most n− 2), has
cardinality of order ε2−n. Therefore∑

B∈B3

ˆ
5B

f(∇uε) dx ≤ C(u)
∑
B∈B3

εn−r

≤ C(u)ε2−r .

Now take a sequence (εj) such that εj ↘ 0. Then uεj
∗
⇀ u in BV(Ω;RN), and

Floc(u,Ω) ≤ lim inf
j→∞

ˆ
Ω

f(∇uεj) dx

≤ lim inf
j→∞

∑
B∈B

ˆ
5B

f(∇uεj) dx

≤ lim inf
j→∞

C
(
L n(Ω) + |Dsu|(Ju ∩ Ω)

)
+ C(u)

(
εj + ε2−rj

)
= C

(
L n(Ω) + |Dsu|(Ju ∩ Ω)

)
.

This completes the proof.

Remark. Localising the proof of this result, we also obtain the upper bound

Floc(u, U) ≤ C(L n(U) + |Dsu|(U)) (3.9)

for any open subset U ⊂ Ω.

3.2 Generalisation of result via polyhedral approximation
We now adapt a result of Braides and Coscia [16], to obtain an upper bound for general
functions u in BV(Ω;RN).

Theorem 3.4. Let Ω be a bounded, open extension domain in Rn, and u ∈ BV(Ω;RN).
Let f : RN×n → R be a continuous function satisfying the growth condition (1.2) for
some exponent 1 ≤ r < 2. Assume also that it has linear growth on matrices ξ
satisfying (3.1). Then

Floc(u,Ω) ≤ C(L n(Ω) + |Du|(Ω)) , (3.10)

where C > 0 is a fixed constant depending on f .
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Proof of Theorem 3.4. We shall first assume that f also satisfies the coercivity condi-
tion

f(ξ) ≥ c0|ξ| (3.11)

for some constant c0 > 0, for all ξ ∈ RN×n. Also assume that u ∈ (C1∩BV)(Ω;RN).
Write u in terms of its components, i.e. u = (u(1), . . . , u(N)). If the dimension of
span{u(y) : y ∈ Ω} is less than N , we may assume for simplicity that there exists
m < N such that u(i) = 0 for i > m and span{u(y) : y ∈ Ω} = span{ε1, . . . , εm},
where {ε1 . . . , εN} is the canonical basis for RN . Otherwise we may use a change
of variables. Note that the proof we give here works even if we were to assume
span{u(y) : y ∈ Ω} has dimension N and m = N .

Take any i ∈ {1, . . . ,m} and fix k ∈ N. By the co-area formula, we have

|Du(i)|(Ω) =
∑
j∈Z

ˆ (j+1)/k

j/k

H n−1(∂∗{u(i) > t} ∩ Ω) dt .

Hence for every j ∈ Z we can find si,kj ∈ (j/k, (j + 1)/k) such that

1

k
H n−1(∂∗{u > si,kj } ∩ Ω) ≤

ˆ (j+1)/k

j/k

H n−1(∂∗{u(i) > t} ∩ Ω) dt ,

so that ∑
j∈Z

1

k
H n−1(∂∗{u > si,kj } ∩ Ω) ≤ |Du(i)|(Ω) .

Now take, for every j ∈ Z, a polyhedron P i,k
j such that{

u(i) >
j + 1

k

}
⊂ P i,k

j ⊂
{
u(i) >

j

k

}
,

and
H n−1(∂P i,k

j ∩ Ω) ≤H n−1(∂∗{u > si,kj } ∩ Ω) +
1

k
2−|j| .

Do this for all i = 1, . . .m. Now define uk ∈ SBV(Ω;RN) by setting

w
(i)
k (y) :=

j

k
on P i,k

j−1 \ P
i,k
j ,

and then letting u(i)
k := max{−k,min{w(i)

k , k}}. Clearly we have ∇u(i)
k (x) = 0 for

L n-almost all x ∈ Ω, and there exists j(i, k) ∈ N such that

J
u
(i)
k
∩ Ω =

⋃
−j(i,k)≤j≤j(i,k)

∂P i,k
j ,

and

Du
(i)
k = Dsu

(i)
k =

j(i,k)∑
j=−j(i,k)

1

k
νi,kj H n−1 |∂P i,k

j
,
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where νi,kj is defined by
D1P i,k

j
= νi,kj H n−1 |∂P i,k

j
.

Hence

Duk = Dsuk =
m∑
i=1

j(i,k)∑
j=−j(i,k)

1

k
εi ⊗ νi,kj H n−1 |∂P i,k

j
,

and

|Dsuk|(Ω) =
m∑
i=1

j(i,k)∑
j=−j(i,k)

|εi ⊗ νi,kj |
k

H n−1(∂P i,k
j ∩ Ω)

=
1

k

m∑
i=1

j(i,k)∑
j=−j(i,k)

H n−1(∂P i,k
j ∩ Ω)

≤ 1

k

m∑
i=1

j(i,k)∑
j=−j(i,k)

(
H n−1(∂∗{u > si,kj } ∩ Ω) +

1

k
2−|j|

)
≤

m∑
i=1

|Du(i)|(Ω) +
1

k

≤
√
m |Du|(Ω) +

1

k
.

Since the jump set Juk is the union of finitely many polyhedra, and by assumption
f has linear growth on matrices of the form η ⊗ ν where η ∈ span{εi : 1 ≤ i ≤ m}
and ν ∈ Rn, we use Lemma 3.3 to get

Floc(uk) ≤ C(L n(Ω) + |Dsuk|(Ω))

≤ C(L n(Ω) + |Du|(Ω)) +
1

k
.

Note that the sequence (wk) converges strongly to u in L∞(Ω;RN), so the truncated
sequence (uk) converges strongly to u in L1(Ω;RN). Moreover, the measures |Duk|
are bounded. Hence also uk

∗
⇀ u in BV(Ω;RN), and using the lower semicontinuity

of Floc (see Proposition 3.2) we have

Floc(u,Ω) ≤ lim inf
k→∞

Floc(ukΩ) ≤ C(L n(Ω) + |Du|(Ω)) .

The result has been proved for u ∈ (C1 ∩ BV)(Ω;RN). For general u ∈ BV(Ω;RN),
it suffices to recall that by convolution and using a partition of unity (see, for exam-
ple, [49]), there exists a sequence (vk) ⊂ (C∞ ∩ BV)(Ω;RN) such that vk

∗
⇀ u in

BV(Ω;RN). Moreover, clearly

span{vk(y) : y ∈ Ω} = span{u(y) : y ∈ Ω} ,
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so using the result for (vk) and again the lower semicontinuity of Floc, we get

Floc(u,Ω) ≤ lim inf
k→∞

Floc(vk,Ω)

≤ C(L n(Ω) + lim inf
k→∞

|Dvk|(Ω))

= C(L n(Ω) + |Du|(Ω)) .

This completes the proof for f linearly coercive.
Suppose f does not satisfy (3.11). In this case, simply let g : RN×n → R be defined

as
g(ξ) := f(ξ) + |ξ| ,

so g does satisfy (3.11). Let G (u, ·) be the Lebesgue-Serrin extension associated with
g. By Proposition 3.2, there exists a sequence (uj) ⊂ W 1,r

loc (Ω;RN) such that uj
∗
⇀ u

in BV and

lim
j→∞

ˆ
Ω

g(∇uj) dx = lim
j→∞

ˆ
Ω

f(∇uj) + |∇uj| dx = G (u,Ω) .

But, by what we have just proved,

G (u,Ω) ≤ C(L n(Ω) + |Du|(Ω)) ,

Now conclude by simply noting that

Floc(u,Ω) ≤ lim inf
j→∞

ˆ
Ω

f(∇uj) dx ≤ lim inf
j→∞

ˆ
Ω

g(∇uj) dx = G (u,Ω) .

Remark. Localising the proof of this result, we also obtain the upper bound

Floc(u, U) ≤ C(L n(U) + |Du|(U)) (3.12)

for any open subset U ⊂ Ω. Related work concerning SBV and polyhedral approxi-
mation may be found in [4, 7, 9, 12].

3.3 Remark on the quadratic growth case
Let us briefly consider the quadratic growth case, i.e. r = 2 in (1.2). Due to the cover-
ing argument in our proof of Lemma 3.3, this borderline case cannot be incorporated.
However, if this were possible, it would be a very strong result. It would show in par-
ticular that no lower semicontinuity result such as the one in the next section can be
obtained in the quadratic growth case. For instance, if we let Ω = B, n = N = 2 and
f(ξ) = | det ξ|, then f is continuous, polyconvex, and has quadratic growth but is 0 on
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matrices of rank≤ 1. If we were to obtain the upper bound (3.10) in this case, then we
could consider the map u(x) = ξx to see that

Floc(u,B) ≤ C(|ξ|+ 1) .

This would mean that we cannot have a lower semicontinuity result in the sequential
weak* topology of BV, even when the limit map is affine, as this would imply

| det ξ| ≤ CFloc(u,B)

and so the determinant would have linear growth on general matrices, which would be
a contradiction.

4 Lower semicontinuity in BV
In this section we provide the proof of the final main result of this paper. Now, Ω is
a bounded, open subset of Rn, n ≥ 2 (not necessarily an extension domain), and we
are considering the variational integral F as defined in (1.1) and the Lebesgue-Serrin
Extension Floc as defined in (1.4); here the integrand f satisfies (1.2) for r ∈ [1, n

n−1
)

and is also assumed to be quasiconvex. Recall that the recession function f∞ of f is
defined as

f∞(ξ) := lim sup
t→∞

f(tξ)

t
. (4.1)

We shall obtain a lower bound for Floc, provided we assume additionally that f∞ is
finite in certain rank-one directions. That is, for a given u ∈ BV(Ω;RN),

f∞(u(y)⊗ ν) <∞ for L n-a.a. y ∈ Ω and all ν ∈ Rn . (4.2)

This is a natural assumption, since otherwise f∞(Dsu/|Dsu|) may just be infinity for
general BV functions. Henceforth, taking a suitable precise representative if necessary,
we shall assume without loss of generality that (4.2) holds for all y ∈ Ω. Note that
since f is quasiconvex, f∞ is rank-one convex (see, for example, [40]), meaning that
it is finite also on rank-one matrices of the form ξ = η ⊗ ν whenever ν ∈ Rn and η ∈
span{u(y) : y ∈ Ω}. Observe that the definition of the recession function immediately
implies that f has linear growth in any direction where f∞ is finite. This will allow us
to apply the results of the previous section. Moreover, since f∞(0) = 0, we have the
linear growth condition

f∞(ξ) ≤ C|ξ| (4.3)

for a fixed finiteC > 0, for all ξ ∈ RN×n such that ξ = η⊗ν, η ∈ span{u(y) : y ∈ Ω},
ν ∈ Rn.

It is also important to note that we are most interested in the case where

span{u(y) : y ∈ Ω} 6= RN .
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This is because, as we shall show in Section 4.3, there can be no non-negative quasi-
convex function of genuinely r growth for 1 < r < n

n−1
for which f∞ is finite in all

rank-one directions: that is, if f is quasiconvex and satisfies (1.2) for 1 ≤ r < n
n−1

but
has linear growth for all matrices ξ where rank(ξ) ≤ 1, then f must in fact have linear
growth in all directions. The proof of this is a straightforward application of Theorem
3.4 and a result of Kristensen [30].

The statement of the main theorem is as follows.

Theorem 4.1. Let Ω be a bounded, open set in Rn and u ∈ BV(Ω;RN). Let f : RN×n →
R be a quasiconvex function satisfying the growth condition (1.2) for r ∈ [1, n

n−1
). Let

the recession function f∞ be as defined in (4.1), and suppose it is finite on rank-one
matrices of the form u(y)⊗ ν, y ∈ Ω, ν ∈ Rn.

Suppose (uj) is a sequence in W 1,r
loc (Ω;RN) such that

uj
∗
⇀ u in BV(Ω;RN) . (4.4)

Then

lim inf
j→∞

F (uj,Ω) ≥
ˆ

Ω

f(∇u(x)) dx+

ˆ
Ω

f∞
(
Dsu

|Dsu|

)
|Dsu| , (4.5)

and hence

Floc(u,Ω) ≥
ˆ

Ω

f(∇u(x)) dx+

ˆ
Ω

f∞
(
Dsu

|Dsu|

)
|Dsu| . (4.6)

A key property of Floc that will be of use to us is that if it is finite, and Ω is an
extension domain, then there exists a non-negative, finite Radon measure λ on Ω such
that

Floc(u, U) = λ(U)

for all open sets U ⊂ Ω. That is, λ (strongly) represents Floc(u, ·) on Ω. That is, we
have the following theorem.

Theorem 4.2. Suppose Ω is an open, bounded extension domain in Rn, n ≥ 2. Let
f : RN×n → R be a continuous function satisfying the growth condition (1.2) for some
exponent 1 ≤ r < n

n−1
. Let u ∈ BV(Ω;RN) and Floc be as defined in (1.4). Then if

Floc(u,Ω) <∞, then there exists a non-negative, finite Radon measure λ on Ω which
represents Floc.

This may be proved by straight-forwardly adapting a well-known result of Fonseca
and Malý [24] to a borderline case. For completion and the reader’s convenience, we
include a proof in the appendix (Theorem A.5).

The structure of the rest of this section is as follows. First we show that the proof
of this result involves establishing two inequalities: one on the absolutely continuous
part of the measure Du, and one on the singlular part. The first inequality is essen-
tially a direct application of a result by Kristensen in [30]. We prove the inequality on
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the singular part of Du by obtaining a lower bound on Floc via a technique of Am-
brosio and Dal Maso [8], and combining this with a non-standard blow-up technique.
Throughout the latter half of this section, we shall regularly make use of Theorem 4.2
and the upper bound in Theorem 3.4.

4.1 Preliminaries
Let f be as stated in the assumptions of Theorem 4.1, and likewise let (uj) be a se-
quence inW 1,r

loc (Ω;RN), u ∈ BV(Ω;RN), and uj
∗
⇀ u in BV(Ω;RN). We may assume

that
lim inf
j→∞

F (uj,Ω)

is finite, as otherwise there is nothing to prove. Moreover, by taking a subsequence
(for convenience not relabelled), we can also assume

lim
j→∞

F (uj,Ω) = lim inf
j→∞

F (uj,Ω) .

Thus the sequence f(∇uj)L n is bounded in M (Ω̄), so we that have for some further
subsequence (again not relabelled) there exists a measure µ in Ω̄ such that

f(∇uj)
∗
⇀ µ in M (Ω̄) .

Clearly, since f is non-negative, µmust also be a non-negative measure on Ω̄. Now ob-
serve that by applying the Radon-Nikodým Theorem twice, first with µ and Lebesgue
measure, and then again on the singular part of µ and |Dsu|, we may decompose µ as

µ =
dµ

dL n
L n +

dµ

d|Dsu|
|Dsu|+ µ∗ ,

where µ∗ is non-negative and singular with respect to both Lebesgue measure and
|Dsu|. Hence

lim inf
j→∞

ˆ
Ω

f(∇uj) dx ≥ µ(Ω) =

ˆ
Ω

dµ

dL n
dx+

ˆ
Ω

dµ

d|Dsu|
d|Dsu|+ µ∗(Ω) .

Therefore the required lower bound will follow if we can show that

dµ

dL n
(x) ≥ f(∇(x)) for L n-a.a. x ∈ Ω, (4.7)

and
dµ

d|Dsu|
(x) ≥ f∞

(
dDsu

d|Dsu|
(x)

)
for |Dsu|-a.a. x ∈ Ω. (4.8)

These two inequalities are the subject of the main propositions of this section. First,
however, we state a lemma, attributable to Kristensen [30], that is particularly impor-
tant for establishing (4.7), which in turn plays a role in aspects of the proof of (4.8).
In the statement of this lemma and subsequently we denote by B% the open ball in Rn

centred on the origin with radius %, and B = B1.
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Lemma 4.3. [30] Let f : RN×n → R be a quasiconvex function satisfying the growth
condition (1.2) for some exponent r ∈ [1, n

n−1
).

Let (uj) be a sequence in W 1,r(B;RN) and suppose

uj → 0 in L1(B;RN) (4.9)

and

sup
j

ˆ
B

|∇uj| dx < +∞ . (4.10)

Then we have the following inequality:

lim inf
j→∞

ˆ
B

f(∇uj) dx ≥ L n(B) · f(0) . (4.11)

The proof of Lemma 4.3 involves applying the following result, which gives us
higher integrability for a trace-preserving extension operator.

Lemma 4.4. [30] Let 1 ≤ r < n
n−1

. Then there exists a linear extension operator

E : (W 1,1)(∂B;RN)→ W 1,r(B2 \ B̄;RN)

with the following properties:

1. If g ∈ C1(∂B;RN) then E(g) ∈ C∞(B2 \ B̄) with E(g)|∂B = g.

2. If (zj) ⊂ C∞(∂B;RN) and limj→∞
´
∂B
zj·φ dH n−1 = 0 for all φ ∈ C∞(∂B;RN),

then for any multi-index α, ∂α[Ezj]→ 0 locally uniformly in B2 \ B̄.

3. There exist positive constants c1, c2, dependent on n,N, r, such that:

(a) ˆ
B2\B

|E(g)|r ≤ c1‖g‖rL1(∂B)

(b) ˆ
B2\B

|∇[Eg]|rL n ≤
(
c2

ˆ
∂B

|∇g| dH n−1

)r
for all g ∈ C1(∂B).

Proof of Lemma 4.3. By approximation we may assume (uj) ⊂ C1(B̄;RN). If the
left hand side of (4.11) is infinite then there is nothing to prove, so suppose it is finite.
Moreover, by extracting a subsequence if necessary, we can assume

l0 := lim inf
j→∞

ˆ
B

f(∇uj) dx = lim
j→∞

ˆ
B

f(∇uj) dx .
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From (4.9), by the Fubini-Tonelli theorem and the Rellich-Kondrachov compactness
theorem we have

lim
j→∞

ˆ 1

0

ˆ
∂B%

|uj| dH n−1 d% = lim
j→∞

ˆ
B

|uj| dx = 0 .

This implies there exists a subsequence {uj}j∈T such that

lim
j→∞ , j∈T

ˆ
∂B%

|uj| dH n−1 = 0 (4.12)

for almost all % ∈ (0, 1). By Fatou’s Lemma and (4.10) we have

ˆ 1

0

lim inf
j→∞ , j∈T

ˆ
∂B%

|∇uj| dH n−1 d% ≤ lim inf
j→∞ , j∈T

ˆ
B

|∇uj| dx <∞ .

Thus, for almost all % ∈ (0, 1)

lim inf
j→∞ , j∈T

ˆ
∂B%

|∇uj| dH n−1 <∞ . (4.13)

Now fix 0 < δ < 1. By (4.12) and (4.13) we can choose % ∈ (δ, 1) such that

lim
j→∞ , j∈T

ˆ
∂B%

|uj| dH n−1 = 0

and
lim inf
j→∞ , j∈T

ˆ
∂B%

|∇uj| dH n−1 <∞ .

Now take a further subsequence {uj}j∈S , where S ⊆ T , so that

lim
j→∞ , j∈S

ˆ
∂B%

|∇uj| dH n−1 = lim inf
j→∞ , j∈T

ˆ
∂B%

|∇uj| dH n−1 .

Relabel the sequence (uj) so that S = N. Now define the sequence (gj) ⊂ W 1,1(∂B;RN)
as:

gj(x) := uj|∂B%(%x) for x ∈ ∂B .

Take a cut-off function η ∈ C1(B;R) such that 1B% ≤ η ≤ 1B, |∇η| ≤ 2
1−% , and

define (vj) ⊂ W 1,r
0 (B;RN) as:

vj(x) :=

{
η(x) · (E(gj))(

x
%
) if |x| ≥ % ,

uj(x) if |x| < % ,

where E is the extension operator from Lemma 4.4.
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Since the function t 7→ tr is convex, (s+ t)r ≤ 2r−1(sr+ tr) for all s, t≥ 0. Hence
from Lemma 4.4 we haveˆ

B\B%

|∇vj|r ≤
ˆ
B\B%

(∣∣∇η · Egj(·/%)
∣∣+
∣∣ η · ∇[Egj(·/%)]

∣∣)r
≤ 2r−1

ˆ
B\B%

|∇η|r ·
∣∣Egj(·/%)

∣∣r + 2r−1

ˆ
B\B%

|η|r ·
∣∣∇[Egj(·/%)]

∣∣r
≤ C

ˆ
B\B%

∣∣Egj(·/%)
∣∣r + C

ˆ
B\B%

∣∣∇[Egj(·/%)]
∣∣r (4.14)

for some constant C. We estimate the two terms in (4.14) using Lemma 4.4 (3) as
follows. Firstly, note that we haveˆ

B\B%

∣∣ [Egj(·/%)]
∣∣r ≤ c1‖gj‖rL1(∂B)

= c1‖uj‖rL1(∂B%)

→ 0 as j →∞ .

Now we use (3)(b) to estimate the remaining term:
ˆ
B\B%

∣∣∇[Egj(·/%)]
∣∣r ≤ (c2

ˆ
∂B

|∇gj| dH n−1

)r
=

(
c2

ˆ
∂B%

|∇uj| dH n−1

)r
. (4.15)

Now note that we may obtain the same inequality (albeit for a different constant) using
Lemma 4.4 for any other r′ such that r < r′ < n

n−1
. Hence by (4.15) and Lemma 4.4,

since
sup
j

ˆ
∂B%

|∇uj| dH n−1 <∞ ,

we can use the De la Vallée Poussin criterion to deduce that the sequence |∇[Egj]|r is
equi-integrable on B \B%. By Lemma 4.4, since

sup
j

ˆ
∂B%

|uj| dH n−1 → 0 as j →∞ ,

∇[Egj] → 0 locally uniformly on B \ B%, and hence so does |∇[Egj]|r. Thus, by
Vitali’s Convergence Theorem,ˆ

B\B%

∣∣∇[Egj(·/%)]
∣∣r → 0 as j →∞ .

Combining these estimates in (4.14), we have

lim sup
j→∞

ˆ
B\B%

|∇vj|r dx = 0 . (4.16)
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Now we use the quasiconvexity and non-negativity of f to obtainˆ
B

f(∇uj) ≥
ˆ
B%

f(∇uj) =

ˆ
B

f(∇vj)−
ˆ
B\B%

f(∇vj)

≥ L n(B)f(0)−
ˆ
B\B%

f(∇vj)

≥ L n(B)f(0)− L
ˆ
B\B%

(
1 + |∇vj|r

)
.

Let j →∞ to get, using (4.16),

l0 ≥ L n(B)f(0)− LL n(B \B%) .

Recall % ∈ (δ, 1) for fixed 0 < δ < 1. Hence we conclude by taking δ arbitrarily close
to 1, which completes the proof of the Lemma.

4.2 Lower bound on the absolutely continuous part
We now state and prove (4.7), which is essentially just the lower semicontinuity result
proved by Kristensen in [30]. Note that it does not require any finiteness properties of
f∞ - in fact f∞ does not feature at all in this context.

Proposition 4.5. Let f : RN×n → R be a quasiconvex function satisfying the growth
condition (1.2) for some exponent 1 ≤ r < n

n−1
. Let Ω be a bounded, open subset of

Rn.
Let (uj) be a sequence in W 1,r

loc (Ω;RN) and u ∈ BV(Ω;RN). Suppose

uj
∗
⇀ u in BV(Ω;RN) . (4.17)

Let µ be a measure in Ω̄ and suppose

f(∇uj)
∗
⇀ µ in M (Ω̄) .

Then for L n-almost all x ∈ Ω, we have

dµ

dL n
(x) ≥ f(∇(x)) .

The proof of Proposition 4.5 is just a straightforward blow-up argument using
Lemma 4.3.

Proof of Proposition 4.5. Since, by (4.17) and the Uniform Boundedness Principle,
|∇uj|L n is bounded in M (Ω̄), we have for some subsequence (for convenience not
relabelled) that there exists a measure ν in Ω̄ such that

|∇uj|
∗
⇀ ν in M (Ω̄) .

Let Ω0 denote the set of points x ∈ Ω such that
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1.
dµ

dL n
(x) = lim

%→0+

µ(B(x, %))

L n(B(x, %))
exists and is finite

2.
dν

dL n
(x) = lim

%→0+

ν(B(x, %))

L n(B(x, %))
exists and is finite

3.
lim
%→0+

1

%

 
B(x,%)

|u(y)− u(x)− [∇u(x)](x− y)| dy = 0

where∇u is the Radon-Nikodým derivative of Du with respect to Lebesgue measure.
By standard results (see for example [43], [49]), L n(Ω \ Ω0) = 0. Fix x0 ∈ Ω0, and
note that since the set

{% ∈ (0, dist(x, ∂Ω)) : (µ+ ν)(∂B(x, %)) > 0}

is at most countable we may find a sequence rk ↘ 0 such that (µ+ ν)(∂B(x, rk)) = 0
for all k. Now define

vj,k(y) :=
uj(x0 + rky)− u(x0)− [∇u(x0)](rky)

rk
, y ∈ B . (4.18)

Then by the above assumptions we have

lim
k→∞

lim
j→∞

ˆ
B

|vj,k(y)| dy = 0 ,

lim
k→∞

lim
j→∞

 
B

|∇vj,k(y) +∇u(x0)| dy = lim
k→∞

lim
j→∞

 
B

|∇uj(x0 + rky)| dy

= lim
k→∞

1

|B(x0, rk)|

ˆ
B(x0,rk)

|∇u(y)| dy

=
dν

dL n
(x0) ,

and similarly

lim
k→∞

lim
j→∞

 
B

f(∇vj,k(y) +∇u(x0)) dy =
dµ

dL n
(x0) .

Hence for each k we can find jk ∈ N such that the all the convergence above occurs for
vjk,k as k tends to infinity. Thus, if we define zk := vjk,k, then (zk) ⊂ W 1,r(B;RN) sat-
isfies conditions (4.9) and (4.10) of Lemma 4.3. Applying this lemma (to the function
f̄(ξ) = f(∇u(x0) + ξ), say), we obtain

lim inf
k→∞

 
B

f(∇zk +∇u(x0)) dy ≥ f(∇u(x0)) ,
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i.e.
dµ

dL n
(x0) ≥ f(∇(x0)) ,

as required.

Now we remark that the following result follows immediately from this proposition
by integrating dµ

dx
with respect to Lebesgue measure over Ω. It gives a first lower

bound for the Lebesgue-Serrin extension, which Theorem 4.1 improves upon, provided
additional assumptions on f are satisfied.

Corollary 4.6. Let f : RN×n → R be a quasiconvex function satisfying the growth
condition (1.2) for some exponent 1 ≤ r < n

n−1
. Let Ω be a bounded, open subset of

Rn.
Let (uj) be a sequence in W 1,r

loc (Ω;RN) and u ∈ BV(Ω;RN). Suppose

uj
∗
⇀ u in BV(Ω;RN) .

Then

lim inf
j→∞

ˆ
Ω

f(∇uj) dx ≥
ˆ

Ω

f(∇u) dx ,

and hence

Floc(u,Ω) ≥
ˆ

Ω

f(∇u) dx .

4.3 Remarks on linear growth on full rank-one cone

We now observe that upper and lower bounds in Theorem 3.4 and Corollary 4.6 re-
spectively enable us to show that whenever f is quasiconvex and satisfies (1.2) for
1 ≤ r < n

n−1
, then finiteness of f∞ on the full rank-one cone in fact implies f has

at most linear growth in all directions. In other words, there can be no non-negative
quasiconvex function which has genuinely superlinear growth 1 < r < n

n−1
but only

linear growth in rank-one directions.

Corollary 4.7. Let f : RN×n → R be a quasiconvex function satisfying the growth
condition (1.2) for some exponent 1 ≤ r < n

n−1
. Suppose f has linear growth on

matrices of rank at most one, i.e.

0 ≤ f(ξ) ≤M(|ξ|+ 1) (4.19)

for a fixed finite M > 0 and all ξ ∈ RN×n satisfying rank(ξ) ≤ 1. Then f has linear
growth in all directions, i.e. (4.19) holds for all ξ ∈ RN×n (for perhaps a larger
constant).
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Proof of Corollary 4.7. Let B denote the open unit ball in Rn. Let ξ be a general
matrix in RN×n, and consider the map u(x) = ξx. Then, since f certainly satisfies the
conditions of Theorem 3.4, and Du = ∇u = ξL n, we have

Floc(u,B) ≤ C(|ξ|+ 1)

for some constant C independent of ξ. However, by Corollary 4.6 we also have

Floc(u,B) ≥
ˆ
B

f(∇u) dx = L n(B)f(ξ) .

Combining these two bounds, we get

f(ξ) ≤ C(|ξ|+ 1) ,

from where the result follows, since C is independent of ξ, which is arbitrary.

Moreover, as the following proposition indicates, we believe that this result can
be generalised to the case where f is W 1,r-quasiconvex for 1 ≤ r < 2, has linear
growth on the rank-one cone, but otherwise need satisfy no other growth conditions on
general matrices. Although our result is limited to the case n = N = 2, we believe that
it ought to be possible to generalise this result for higher dimensions, and are currently
working on this.

Recall that f : RN×n → R is said to be W 1,r-quasiconvex for some exponent 1 ≤
r ≤ ∞ if it satisfies the inequality

ˆ
B

f(ξ +∇φ(x)) dx ≥ L n(B)f(ξ)

for all ξ ∈ RN×n and all φ ∈ W 1,r
0 (B;RN). This definition was introduced and first

studied by Ball and Murat in [14], and is generalisation of Morrey’s classical notion of
quasiconvexity. We remark that if f is quasiconvex and satisfies the growth condition
(1.2) for some exponent r, then it is W 1,r-quasiconvex.

Proposition 4.8. Let n = N = 2, andB denote the open unit ball in R2. Let 1 < r < 2
and f : R2×2 → R be a non-negative W 1,r-quasiconvex function.

Suppose f has linear growth on matrices of rank at most one, i.e. it satisfies (4.19)
for a fixed finite M > 0 and all ξ ∈ R2×2 satisfying rank(ξ) ≤ 1. Then f has linear
growth from above in all directions, i.e. (4.19) holds for all ξ ∈ R2×2 (for perhaps a
larger constant).

Proof of Proposition 4.8. Let ξ ∈ R2×2. Now define the map uξ : B → R2 as

uξ(x) =
ξx

|x|
.
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Note that uξ maps B \ {0} to the surface ξ(∂B), so det(∇uξ(x)) = 0 for all x ∈
B \ {0}. Hence rank(det(∇uξ)) ≤ 1 on B \ {0}. Indeed,

∇uξ(x1, x2) =
ξ

(x2
1 + x2

2)
3
2

·
(

x2
2 −x1x2

−x1x2 x2
1

)
=

ξ

(x2
1 + x2

2)
3
2

·
(
(x2,−x1)t ⊗ (x2,−x1)t

)
.

Hence, by assumption,

f(∇uξ(x)) ≤M(|∇uξ(x)|+ 1) (4.20)

for all x ∈ B \ {0}. It is well-known that uξ ∈ W 1,q(B;R2) for all 1 ≤ q < n = 2
when ξ is the identity (see for example [14]), and consequently clearly also for any
other ξ ∈ R2×2. Moreover, uξ(x) = ξx on ∂B. Therefore, since f isW 1,r-quasiconvex
and 1 < r < 2, we have

ˆ
B

f(∇uξ) dx ≥ L 2(B)f(ξ) . (4.21)

Thus, using (4.20) and (4.21), we get

f(ξ) ≤ (M/|B|)
ˆ
B

1 + |∇uξ| dx

≤ (M/|B|)
(

1 +

ˆ
B

∣∣ξ(∇(x/|x|)
)∣∣ dx)

≤ (M/|B|)
(

1 + |ξ|
ˆ
B

∣∣∇(x/|x|)
∣∣ dx) .

Since x 7→ x/|x| is in W 1,1(B;R2), the required result follows with M replaced by
(M/|B|)

´
B

∣∣∇(x/|x|)
∣∣ dx = 2M .

4.4 Lower bound on the singular part
Theorem 2.4 plays a key part in our proof of the inequality (4.8). This is because it
shows us that the blow-up of a BV function on the singular part of the derivative is
essentially a function of one variable; this allows us to apply the following lemma,
similar to one of Ambrosio and Dal Maso [8], which gives us a useful lower bound for
the Lebesgue-Serrin extension of such functions.

Lemma 4.9. Let Q ⊂ Rn be a unit n-cube whose sides are either orthogonal or
parallel to a unit vector ν ∈ Rn, let η be a unit vector in RN , and let v ∈ BV(Q;RN)
be a function representable as

v(y) = ψ(〈y, ν〉)η
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for a some non-decreasing function ψ : (a, b)→ R. Suppose u ∈ BV(Q;RN) satisfies
supp(v − u) ⊂⊂ Q.

Let f : RN×n → R be a quasiconvex function satisfying the growth condition (1.2)
for some exponent 1 ≤ r < n

n−1
, and also the coercivity condition

f(ξ) ≥ c0|ξ|

for some constant c0 > 0, for all ξ ∈ RN×n. Let the recession function f∞ be as
defined in (4.1), and suppose it is finite on rank-one matrices of the form u(y) ⊗ ν,
y ∈ Ω, ν ∈ Rn. Let Floc be as defined in (1.4). Then

Floc(u,Q) ≥ f(Du(Q)) .

Proof of Lemma 4.9. We may assume without loss of generality that ν = e1 and Q =
(0, 1)n. Let ψ : (0, 1)→ R be a non-decreasing function such that v(y) = ψ(y1)η, and
let α denote the increment of ψ in (0, 1), i.e.

α = lim
t→1−

ψ(t)− lim
t→0+

ψ(t) = |Dψ|(0, 1) = |Dv|(Q) < +∞ .

Now define w ∈ BVloc((0,+∞)n;RN) by

w(y) := u(y − [y]) + α[y1]η ,

where, for every t ∈ R, [t] denotes the integer part of t, and for y = (y1, . . . , yn) ∈ Rn,
[y] is defined to be ([y1], . . . , [yn]). Now define, for y ∈ Q,

uk(y) :=
w(ky)

k
∈ BV(Q;RN) .

Note that

uk(y) =
u(ky − [ky])

k
+ α

[ky1]

k
η ,

[ky1]/k converges to y1 as k →∞, and
ˆ
Q

∣∣∣∣u(ky − [ky])

k

∣∣∣∣ dy =
1

kn+1

ˆ
(0,k)n

|u(y − [y])| dy =
1

k

ˆ
Q

|u(y)| dy → 0.

Therefore uk converges to the affine function u0(y) = αy1η in L1(Q;RN). Now let
Q1 . . . Qkn be the standard decomposition of Q into kn congruent cubes of side length
1/k. Since, by construction, Dw does not have any jumps on any hyperplane of the
form yj = h where h is an integer and 1 ≤ j ≤ n, it follows that

|Duk|(Q ∩ ∂(Qi)) = 0 for all 1 ≤ i ≤ kn . (4.22)

This implies
Duk(Q) = Dw(Q) = Du(Q) ,
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so (uk) is bounded in BV(Q;RN). Hence in fact the sequence converges weakly* in
BV to u0. By Proposition 3.1, we get

Floc(uk, (0, 1/k)n) = (1/k)nFloc(u,Q) , Floc(uk, (0, 1/k)n) = Floc(uk, Qi)
(4.23)

for all 1 ≤ i ≤ kn. Now, using the fact that Floc has a measure representation, the
upper bound (3.12) from Theorem 3.4, and (4.22), it follows that

Floc(uk, Q) =
kn∑
i=1

Floc(uk, Qi) .

This implies, together with (4.23), that Floc(uk, Q) = Floc(u,Q). By Corollary 4.6
and the lower semicontinuity of Floc, we get

Floc(u,Q) = lim
k→∞

Floc(uk, Q) ≥ Floc(u0, Q) ≥ f(αη ⊗ e1) .

Noting that Du(Q) = Dv(Q) = αη ⊗ e1, the proof is complete.

We are now in a position to be able to prove the inequality (4.8) which, combined
with the proof of (4.7) established in Proposition 4.5, allows us to conclude our proof
of Theorem 4.1. In order to use the results of the previous section, we first need to
assume that the integrand f is coercive, before then showing how this assumption can
be removed.

Proposition 4.10. Let Ω be a bounded, open subset of Rn, and let (uj) be a sequence
in W 1,r

loc (Ω;RN) and u ∈ BV(Ω;RN). Let f : RN×n → R be a quasiconvex function
satisfying the growth condition (1.2) for some exponent 1 ≤ r < n

n−1
, that also satisfies

the coercivity condition
f(ξ) ≥ c0|ξ|

for some constant c0 > 0, for all ξ ∈ RN×n. Let the recession function f∞ be as
defined in (4.1), and suppose it is finite on rank-one matrices of the form u(y) ⊗ ν,
y ∈ Ω, ν ∈ Rn.

Suppose
uj

∗
⇀ u in BV(Ω;RN) . (4.24)

Let µ be a measure in Ω̄ and suppose

f(∇uj)
∗
⇀ µ in M (Ω̄) .

Then for |Dsu|-almost all x ∈ Ω, we have

dµ

d|Dsu|
(x) ≥ f∞

(
Dsu

|Dsu|
(x)

)
.
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Proof of Proposition 4.10. By Theorem 2.4, letting ξ : Ω → RN×n denote the density
of Du with respect to |Du|, we have, for |Dsu|-almost all x0 ∈ Ω, |ξ(x0)| = 1,
rank(ξ(x0)) = 1, and

lim
%→0+

Du(Q(x0, %))

|Du|(Q(x0, %))
= ξ(x0) , lim

%→0+

Du(Q(x0, %))

%n
= +∞ ,

where Q(x0, %) is any cube centred at x0 with side-length %. Fix x0 with these prop-
erties, and write ξ(x0) = η ⊗ ν where η ∈ Rn, ν ∈ RN , |η| = |ν| = 1. Without
loss of generality, suppose ν = e1. Let Q = Q(0, 1) = (−1

2
, 1

2
)n be the unit cube in

Rn, so Q has faces either orthogonal or parallel to e1. Also, subsequently, we shall let
Q(x0, %) specifically denote the cube x0 + %Q. Let (rk) be a sequence decreasing to 0,
Q(x0, r1) ⊂ Ω. Now define the functions (vj,k) ⊂ W 1,r(Q;RN) by

vj,k(y) :=
rnk

|Du|(Q(x0, rk))

(
uj(x0 + rky)

rk
−mk

)
, (4.25)

and (vk) ⊂ BV(Q;RN) by

vk(y) :=
rnk

|Du|(Q(x0, rk))

(
u(x0 + rky)

rk
−mk

)
, (4.26)

where

mk :=

ˆ
Q

u(x0 + rky)

rk
dL n .

Then, by (4.24), vj,k
∗
⇀ vk in BV(Q; Ω) as j → ∞ for each k. By Theorem 2.4, we

can chose our sequence (rk) so that vk converges weakly* in BV(Q;RN) to a function
v ∈ BV(Q;RN) which can be represented as

v(y) = ψ(y1)η

for a suitable non-decreasing function ψ : (a, b) → R. By the same considerations as
in Proposition 4.5, the set

{r > 0 : µ(∂Q(x0, r)) > 0, Q(x0, r) ⊂ Ω}

is at most countable. Hence, by the remark to Theorem 2.4, we can also additionally
assume that µ(∂Q(x0, rk)) = 0 for all k. Moreover, for a given σ ∈ (0, 1), we have

1 ≥ |Dv|(Q) ≥ |Dv|(σQ̄) ≥ σn , lim
k→∞
|Dvk|(Q) ≥ σn . (4.27)

By Fubini, there exists s ∈ (σ, 1) such that

lim
k→∞

ˆ
∂(sQ)

|v − vk| dH n−1 = 0 . (4.28)
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Now define (wk) ⊂ BV(Q;RN) by

wk :=

{
vk on sQ ,
v on Q \ sQ .

Now define the sequence (tk) converging to +∞ by

tk :=
|Du|Q(x0, rk)

rnk
.

By Lemma 4.9 we have
Floc(wk, Q) ≥ f(Dv(Q)) ,

so clearly, for fixed k,

t−1
k Floc(tkwk, Q) ≥ t−1

k f(tkDv(Q)) . (4.29)

Moreover, by the measure representation of Floc in Theorem 4.2, we have

t−1
k Floc(tkwk, Q) ≤ t−1

k Floc(tkvk, sQ) + t−1
k Floc(tkwk, Q \ σQ̄) . (4.30)

We now obtain various estimates for the terms in (4.30). First note that we have

t−1
k Floc(tkvk, sQ) ≤ t−1

k Floc(tkvk, Q) ≤ lim inf
j→∞

t−1
k

ˆ
Q

f(tk∇vj,k) dx .

However

t−1
k

ˆ
Q

f(tk∇vj,k) dx =
rnk

|Du|Q(x0, rk)

ˆ
Q

f(∇uj(x0 + rky) dy

=
1

|Du|Q(x0, rk)

ˆ
Q(x0,rk)

f(∇uj(y)) dy

j→∞−−−→ µ(Q(x0, rk))

|Du|(Q(x0, rk))
,

and so

t−1
k Floc(tkvk, sQ) ≤ µ(Q(x0, rk))

|Du|Q(x0, rk)

→ dµ

d|Du|
(x0) as k →∞ . (4.31)

Observe that wk(y) ∈ span{u(z) : z ∈ Q} for all y ∈ Q. Hence we may use the upper
bound (3.12) in Theorem 3.4 to obtain

t−1
k Floc(tkwk, Q \ σQ̄) ≤ t−1

k C(L n(Q \ σQ̄)) + |tkDwk|(Q \ σQ̄)

= C
(
t−1
k (1− σn) + |Dwk|(Q \ σQ̄)

)
.
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Note that

|Dwk|(Q \ σQ̄) ≤ |Dv|(Q \ σQ̄) + |Dvk|(Q \ σQ̄) +

ˆ
∂(sQ)

|v − vk| dH n−1 ,

and hence, using (4.27) and (4.28), we have

lim sup
k→∞

|Dwk|(Q \ σQ̄) ≤ 2(1− σn) .

This means
lim sup
k→∞

t−1
k Floc(tkwk, Q \ σQ̄) ≤ C(1− σn) . (4.32)

Lastly, recall the definition of the recession function in (4.1): since f is quasiconvex
and hence rank-one convex, we have

lim sup
t→∞

f(tξ)

t
= lim

t→∞

f(tξ)

t

whenever rank(ξ) ≤ 1. Therefore, noting that for x0 ∈ supp(|Dsu|) we haveDv(Q) =
η ⊗ e1 = ξ(x0), we obtain

lim
k→∞

t−1
k f(tkDv(Q)) = f∞(Dv(Q)) . (4.33)

Also, for such x0,
dµ

d|Du|
(x0) =

dµ

d|Dsu|
(x0)

Now let k tend to infinity in (4.30), and use (4.31), (4.32) and (4.33) to get

f∞(ξ(x0)) ≤ dµ

d|Dsu|
(x0) + C(1− σn) .

We conclude the proof by letting σ ↗ 1.

We now remove the coercivity condition on f to prove Theorem 4.1.

Proof of Theorem 4.1. By Propositions 4.5 and 4.10, we have established the inequal-
ities (4.7) and (4.8) for when f is coercive, allowing us establish the Theorem in this
case. Otherwise, define f ε : RN×n → R as

f ε(ξ) := f(ξ) + ε|ξ| ,

for all ξ ∈ RN×n, for some ε > 0. Let (uj) be a sequence in W 1,r(Ω;RN) such that

uj
∗
⇀ u in BV(Ω;RN) .

Then we have

lim inf
j→∞

ˆ
Ω

f ε(∇uj(x)) dx ≥
ˆ

Ω

f ε(∇u(x)) dx+

ˆ
Ω

f ε∞

(
Dsu

|Dsu|

)
|Dsu| .

36



Now note that ˆ
Ω

f ε(∇u(x)) dx =

ˆ
Ω

f(∇u(x)) dx+ ε

ˆ
Ω

|∇u(x)| dx

It is also clear that the recession function f ε∞ satisfies

f ε∞(ξ) = f∞(ξ) + ε|ξ| ,

so ˆ
Ω

f ε∞

(
Dsu

|Dsu|

)
|Dsu| =

ˆ
Ω

f∞
(
Dsu

|Dsu|

)
|Dsu|+ ε|Dsu|(Ω) .

Moreover, since (uj) is a weakly* convergent sequence in BV, we have

sup
j

ˆ
Ω

|∇uj(x)| dx <∞ .

Therefore we have

lim inf
j→∞

ˆ
Ω

f(∇uj(x)) ≥
ˆ

Ω

f(∇u(x)) dx+

ˆ
Ω

f∞
(
Dsu

|Dsu|

)
|Dsu|

+ ε
(
|Du|(Ω)− sup

j

ˆ
Ω

|∇uj(x)| dx
)

,

and conclude by letting ε tend to 0.

4.5 Integral representation for certain functions in SBV
Let us turn our attention again to Lemma 3.3: it is interesting to note that if u ∈
SBV(Ω;RN) satisfies the conditions of this lemma, then the result tells us that Floc(u,Ω) <
∞. Hence if we return to the assumption that r ∈ [1, n

n−1
) then, by Theorem 4.2,

Floc(u, ·) is representable by some non-negative, finite Radon measure λ on Ω. More-
over, we have

λ� L n + H n−1bJu .

This allows us to refine the upper bound (3.2), and hence get integral represention
(instead of a lower bound) in Theorem 4.1 for a certain limited class of funtions in SBV.
It makes use of the following corollary of Besicovitch’s Covering Theorem, which we
state first. For a proof refer to, for example, [22].

Theorem 4.11. Let µ be a Borel measure on Rn and B be any collection of nonde-
generate closed balls (i.e. balls with radius strictly larger than 0). Let A denote the
centres of the balls in B. Assume µ(A) < ∞ and inf{% : B(a, %) ∈ B} = 0 for each
a ∈ A. Let U ⊂ Rn be an open set. Then there exists a countable collection G of
disjoint balls in B such that ⋃

B∈G

B ⊂ U
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and

µ

(
(A ∩ U) \

⋃
B∈G

B

)
= 0 .

Corollary 4.12. Let Ω be a bounded, open extension domain in Rn. Suppose u ∈
SBV(Ω;RN) is such that

|∇u(x)| = 0

for L n-almost all x ∈ Ω, and that the set Ju of approximate jump points of u is
the union of finitely many polyhedra. Let f : RN×n → R be a continuous function
satisfying the growth condition (1.2) for some exponent 1 ≤ r < n

n−1
. Let the recession

function f∞ be as defined in (4.1), and suppose it is finite on rank-one matrices of the
form u(y)⊗ ν, y ∈ Ω, ν ∈ Rn. Let Floc be as defined in (1.4). Then

Floc(u,Ω) ≤ L n(Ω)f(0) +

ˆ
Ω

f∞
(
Dsu

|Dsu|

)
|Dsu| . (4.34)

Proof of Corollary 4.12. Using Lemma 3.3 and Theorem 4.2, let λ be a non-negative
finite Radon measure on Ω representing Floc, i.e.

λ(U) = Floc(u, U)

for all open sets U ⊂ Ω. Now let % > 0 and let B(%) be a collection of closed balls of
radius at most % that is a fine cover of Ω. Consider any individual ball B ∈ B(%). Now
take any open ball B′ ⊃ B of radius less than 2%. If B′ ∩ Ju = ∅, then Du = ∇u = 0
on B′, and u = a for some constant a ∈ RN . Hence by the definition of Floc, noting
that if uj = a for all j, then uj

∗
⇀ u in BV(B′;RN),

λ(B′) = Floc(u,B
′) ≤

ˆ
B′
f(0) dx = L n(B′)f(0) . (4.35)

Now suppose B′ ∩ Ju 6= ∅ and Ju has only a single polyhedron intersecting with B′.
Then the jump set cuts the ball into two parts B′a and B′b, with (since∇u = 0){

u(y) = a on B′a ,
u(y) = b on B′b ,

for some a, b ∈ RN . Moreover, since any point on a polyhedron is characterised by
the intersection of finitely many n − 1-dimensional hyperplanes, there exists a vector
ν, say, such that {

B′a = B′ ∩ (Ju + tν) for t < 0 ,
B′b = B′ ∩ (Ju + tν) for t > 0 .

Now let 0 < δ < % and define χ : (−%, %)→ RN by

χ(t) :=


a if t ≤ −δ ,(b− a

2δ

)
(x− δ) + b if t ∈ (−δ, δ) ,

b if t ≥ δ .
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Now define a function uδ ∈ C(B′;RN) as follows: note that for each y ∈ B′, there
exists a unique t ∈ (−%, %) with y ∈ Ju + tν, and let

uδ(y) := χ(t) .

We therefore have

∇uδ(y) =

{
0 if y ∈ Ju + tν for t /∈ (−δ, δ) ,

(b− a)⊗ ν
2δ

if y ∈ Ju + tν for t ∈ (−δ, δ) .

Now use the co-area formula to get

ˆ
B′
f(∇uδ) dx ≤ L n(B′)f(0) + C

ˆ δ

−δ

ˆ
(Ju∩B′)+tν

f

(
(b− a)⊗ ν

2δ

)
dH n−1 dt

= L n(B′)f(0) + C · 2δf
(

(b− a)⊗ ν
2δ

)
×H n−1(Ju ∩B′)

→ L n(B′)f(0) + Cf∞((b− a)⊗ ν)H n−1(Ju ∩B′) ,

as δ → 0. Note that the final term here is finite, since b − a ∈ span{u(y) : y ∈ Ω}.
Now take any decreasing sequence δj converging to zero, and define uj as uδj . It is
easily verified that uj converges almost everywhere to u in B′, and that the gradients
∇uj are bounded in L1(B′;RN). Hence, taking a subsequence if necessary, we have
uj

∗
⇀ u in BV(B′;RN). Thus

λ(B′) = Floc(u,B
′) ≤ L n(B′)f(0) + Cf∞((b− a)⊗ ν)H n−1(Ju ∩B′) . (4.36)

Now note that by taking B′ ↘ B we obtain the inequalities (4.35) and (4.36) for the
closed ball B.

We also have that H n−1-almost all points x ∈ Ju are on a face of the polyhedron.
Hence for balls B ∈ B(%) that only intersect with a face, we have that Ju is charac-
terised by an n− 1-dimensional hyperplane passing through B. Therefore in this case
we may take ν to be the normal vector of this plane, and a, b are just the one-sided
traces u−(y), u+(y) on either side of the jump, for any y ∈ B ∩ Ju. Moreover, we can
take the constant C in (4.36), obtained from the co-area formula used above, to be one.
Therefore for such a ball B, using the one-homogeneity of f∞, we have

λ(B) ≤ L n(B)f(0) +

ˆ
Ju∩B

f∞((u+(y)− u−(y))⊗ νu(y)) dH n−1(y)

= L n(B)f(0) +

ˆ
Ju∩B

f∞
(
u+(y)− u−(y)

|u+(y)− u−(y)|
⊗ νu(y)

)
|u+(y)− u−(y)| dH n−1(y)

= L n(B)f(0) +

ˆ
Ju∩B

f∞
(
Dsu

|Dsu|
(y)

)
|Dsu|(y) . (4.37)
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Now we apply Theorem 4.11 with µ = L n+H n−1bJu+λ and U = Ω. Moreover,
we can assume centres of the balls in B, which is a fine partition, is all of Ω. There
exists a countable collection of balls G ⊂ B(%) such that⋃

B∈G

B ⊂ U

and

(L n + H n−1bJu + λ)

(
Ω \

⋃
B∈G

B

)
= 0 ,

Let G1 denote the set of balls where (4.35) holds and G2 denote the set of balls where
(4.37) holds. Then G \ (G1 ∪ G2) is the set of balls B where B ∩ Ju is nonempty and
not just an n− 1-dimensional hyperplane. We have already remarked that that H n−1-
almost all points x ∈ Ju are locally characterised by a hyperplane, so given ε > 0, in
light of (4.5) we may chose % small enough so that∑

B∈G\(G1∪G2)

λ(B) ≤ ε .

Thus

λ(Ω) =
∑
B∈G

λ(B)

=
∑
B∈G1

λ(B) +
∑
B∈G2

λ(B) + ε

≤
∑
B∈G1

L n(B)f(0) +
∑
B∈G2

(
L n(B)f(0) +

ˆ
Ju∩B

f∞
(
Dsu

|Dsu|

)
|Dsu|

)
+ ε

= L n(Ω)f(0) +

ˆ
Ju

f∞
(
Dsu

|Dsu|

)
|Dsu|+ ε ,

from where the required result follows.

The following result follows immediately, combining the upper bound of Corollary
4.12 with the lower bound in Theorem 4.1. Note that for the class of functions u we
are considering, ˆ

Ω

f(∇u) dx = L n(Ω)f(0) .

Corollary 4.13. Let Ω, u be as in Corollary 4.12. Let f : RN×n → R be a quasicon-
vex function satisfying the growth condition (1.2) for r ∈ [1, n

n−1
). Let the recession

function f∞ be as defined in (4.1), and suppose it is finite on rank-one matrices of the
form u(y)⊗ ν, y ∈ Ω, ν ∈ Rn. Then

Floc(u,Ω) = L n(Ω)f(0) +

ˆ
Ω

f∞
(
Dsu

|Dsu|

)
|Dsu| .
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A Measure representation
In this appendix, we shall provide a proof of Theorem 4.2. Let Ω be an open, bounded
extension domain in Rn, n ≥ 2, and let f be a continuous integrand satisfying the
growth condition (1.2) where r ∈ [1, n

n−1
). Consider the Lebesgue-Serrin extensions

Floc and Floc as defined in (1.3) and (1.4) respectively.
We shall first prove integral estimates for a trace-preserving operator, which will

then be used to show that these functionals are representable by finite Radon measures
on Ω. This essentially comes directly from the work of Fonseca and Malý in [24],
where measure representation is obtained for Lebesgue-Serrin extensions in the con-
text of Sobolev Spaces of exponent larger than one (in fact they consider more general
integrands of the form f = f(x, u,∇u)). The reader may just as easily obtain the
results given here by referring to their paper, letting “p” (in their paper) be equal to 1
here, letting their “q” be r, and carefully substituting instances of “weak convergence
in W 1,p” with weak* convergence in BV. However, since this borderline case is not
explicitly contained in their paper (and for the convenience of the reader), we give a
complete proof here.

These results are important in the context of proving Theorem 4.1, where we ob-
tain a lower semicontinuity result in the case where f is assumed additionally to be
quasiconvex and have at most linear growth in certain directions.

A.1 A trace-preserving linear operator
Adapting a result in [24], we construct a linear operator Tu from W 1,1 into itself that
improves integrability over a “layer”, allowing us to estimate theW 1,r norm of Tu, for
r ∈ [1, n

n−1
), in terms of a special maximal function. This will be used subsequently

to “connect” two functions across a thin transition layer and estimate the increase of
energy. In their paper, they are interested specifically in a linear operator from W 1,p

into W 1,p for p > 1. However, we have observed that the proof also works for p = 1,
which is what we require.

Let Ω be a bounded, open subset of Rn. Let η ∈ C∞c (Ω) be a non-negative function
and [t1, t2] ⊂ (0, ‖η‖∞). Suppose also that 0 < |∇η| ≤ A on {t1 ≤ η ≤ t2}. Given
a subinterval (a, b) ⊂ (t1, t2), let Zb

a denote the set {a < η < b}, and for t0 ∈ (t1, t2),
let Γt0 denote the level set {η = t0}.

Fix t0 ∈ (t1, t2) and note that there exists a diffeomorphism Gt0 of Γt0 × [t1, t2]
onto Z̄t2

t1 such that {
Gt0(z, t0) = z
η(Gt0(z, t)) = t

(A.1)

for all z ∈ Gt0 , t ∈ [t1, t2]. To see this, consider the flow hz verifying{
dhz
dt

= ∇η(h(t))
|∇η(h(t))|2

hz(t0) = z
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and set Gt0 := hz(t). Note that the map Gt0 is bi-Lipschitz, and also that the Jacobians
of Gt0 and G−1

t0 are bounded. This allows us to establish the following lemma.

Lemma A.1. [24] Let s ∈ (t1, t2) and % > 0 be such that [s− %, s+ %] ⊂ (t1, t2). Let
h be a non-negative measurable function on Ω. Then

ˆ
{η=s}

(ˆ
B(z, %

A
)

h(y) dy

)
dH n−1(z) ≤ C%n−1

ˆ
Zs+%
s−%

h(y) dy ,

where C is a constant dependent on n, η, t1 and t2.

Proof of Lemma A.1. First note that if z ∈ Γs, then B(z, %
A

) ⊂ Zs+%
s−% . Hence, using the

change of variables y = Gs(z, t) and (A.1), we obtain
ˆ
{η=s}

( ˆ
B(z, %

A
)

h(y) dy

)
dH n−1(z)

≤ C

ˆ
Γs

( ˆ s+%

s−%

( ˆ
{σ∈Γs:|Gs(σ,t)−Gs(z,s)|< %

A
}

h(Gs(σ, t)) dH n−1(σ)

)
dt

)
dH n−1(z)

= C

ˆ
Γs

(ˆ s+%

s−%

( ˆ
{z∈Γs:|Gs(σ,t)−Gs(z,s)|< %

A
}

h(Gs(σ, t)) dH n−1(z)

)
dt

)
dH n−1(σ)

≤ C

ˆ
Γs×(s−%,s+%)

H n−1
({
z ∈ Γs : |Gs(σ, t)−Gs(z, s)| < %

A

})
× h(Gs(σ, t)) dL n(σ, t)

≤ C%n−1

ˆ
Zs+%
s−%

h(y) dy ,

since, due to the Lipschitz continuity of G−1
s ,

H n−1
({
z ∈ Γs : |Gs(σ, t)−Gs(z, s)| < %

A

})
≤ C%n−1 .

We may now prove the following result.

Lemma A.2. Let r ∈ [1, n
n−1

). Let t1 < a < b < t2. There exists a linear operator
T : W 1,1(Ω;RN)→ W 1,1(Ω;RN) such that Tu = u on Ω \ Zb

a and

‖Tu‖W 1,r(Zb
a) ≤ C(b− a)

n
r
−n+1

(
sup
t∈(a,b)

(t− a)−1‖u‖W 1,1(Zt
a)

+ sup
t∈(a,b)

(b− t)−1‖u‖W 1,1(Zb
t )

)
, (A.2)

where C depends on n, r, η, t1 and t2.
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Proof of Lemma A.2. This proof is directly from [24], but we specifically consider a
borderline case that is left out in that proof. Set

Tu(x) :=

 
B(0,1)

u(x+ θ(x)y) dy ,

where

θ(x) : =
1

2A
max{0,min{η(x)− a, b− η(x)}}

=


0 if η(x) ≥ b

b−η(x)
2A

if a+b
2
< η(x) < b

η(x)−a
2A

if a < η(x) ≤ a+b
2

0 if η(x) ≤ a .

It is clear to see that Tu(x) = x if x /∈ Zb
a, and

Tu(x) =

 
B(x,θ(x))

u(z) dz

for x ∈ Zb
a. Let c := a+b

2
and define

M0 := sup
t∈(a,b)

(t− a)−1

ˆ
Zt
a

|u| dy ,

M1 := sup
t∈(a,b)

(t− a)−1

ˆ
Zt
a

|u|+ |∇u| dy .

First assume u is smooth and fix α ≥ 1. If % ∈ (0, 1
4
(b− a)) and if z ∈ {η = a+ 2%},

then θ(z) = %
A

and B(z, θ(z)) ⊂ Za+3%
a+% . Hence

|Tu(z)|α ≤ C%−nα
( ˆ

B(z, %
A

)

|u(y)| dy
)α

≤ C%−nα
( ˆ

Za+3%
a+%

|u(y)| dy
)α−1( ˆ

B(z, %
A

)

|u(y)| dy
)

.

Now use Lemma A.1 to getˆ
{η=a+2%}

|Tu(z)|α dH n−1(z)

≤ C%−nα
(ˆ

Za+3%
a+%

|u(y)| dy
)α−1

×
ˆ
{η=a+2%}

( ˆ
B(z, %

A
)

|u(y)| dy
)

dH n−1(z)

≤ C%−nα
(ˆ

Za+3%
a+%

|u(y)| dy
)α−1

%n−1

( ˆ
Za+3%
a+%

|u(y)| dy
)

= C%−nα+n−1

( ˆ
Za+3%
a+%

|u(y)| dy
)α

. (A.3)
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By the co-area formula and (A.3) for α = r, since |∇η| is bounded away from zero,
we get

ˆ
Zc
a

|Tu(x)|r dx ≤ C

ˆ 1
4

(b−a)

0

(ˆ
{η=a+2%}

|Tu(z)|r dH n−1(z)

)
d%

≤ C

ˆ 1
4

(b−a)

0

%−nr+n−1

( ˆ
Za+3%
a+%

|u(y)| dy
)r

d% . (A.4)

We have shown that this inequality holds for u when u is smooth. Now we show
that (A.4) holds for a general function u ∈ L1(Ω;RN). By a standard approximation
argument (for example, using mollification) there exists a sequence (uj) of smooth
functions such that uj → u strongly in L1(Ω;RN), and pointwise almost everywhere.
Now we use this property and Fatou’s Lemma to get:ˆ

Zc
a

|Tu(x)|r dx =

ˆ
Zc
a

lim
j→∞
|Tuj(x)|r dx

≤ lim inf
j→∞

ˆ
Zc
a

|Tuj(x)|r dx

≤ lim inf
j→∞

C

ˆ 1
4

(b−a)

0

%−nr+n−1

( ˆ
Za+3%
a+%

|uj(y)| dy
)r

d%

= C

ˆ 1
4

(b−a)

0

%−nr+n−1

( ˆ
Za+3%
a+%

|u(y)| dy
)r

d% ,

as required. Moreover, since ˆ
Za+3%
a+%

|u(y)| dy ≤ CM0% ,

we have
ˆ
Zc
a

|Tu(x)|r dx ≤ CM r
0

ˆ 1
4

(b−a)

0

%−nr+n−1+r d%

≤ CM r
0 (b− a)n−(n−1)r . (A.5)

We use an entirely similar argument to conclude that we also haveˆ
Zb
c

|Tu(x)|r dx ≤ CM r
0 (b− a)n−(n−1)r .

Now note that we can also obtain the same estimates with the gradients∇Tu and∇u.
This is because

∂Tu

∂xi
(x) =

 
B(0,1)

(
∂u

∂xi
(x+ θ(x)y) +

n∑
j=1

∂u

∂xj
(x+ θ(x)y)yj

∂θ

∂xi
(x)

)
dy
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and so
|∇Tu| ≤ CT (|∇u|) . (A.6)

Therefore the Lr estimate (A.5) also holds for derivatives, giving

‖Tu‖W 1,r(Zb
a) ≤ C(b− a)

n
r
−n+1

(
sup
t∈(a,b)

(t− a)−1‖u‖W 1,1(Zt
a)

+ sup
t∈(a,b)

(b− t)−1‖u‖W 1,1(Zb
t )

)
,

as required.
It remains to show that T is a continuous linear operator. For u smooth, use the

co-area formula, (A.3) with α = 1, and (A.6) to get
ˆ
Zc
a

(|Tu|+ |∇Tu| dy

≤ C

ˆ 1
4

(b−a)

0

( ˆ
{η=a+2%}

|Tu(z)|+ |∇Tu(z)| dH n−1(z)

)
d%

≤ C

ˆ 1
4

(b−a)

0

( ˆ
Za+3%
a+%

%−1(|u(y)|+ |∇u(y)|) dy

)
d%

≤ C

ˆ 1
4

(b−a)

0

( ˆ a+3%

a+%

( ˆ
{η=t}

%−1(|u(z)|+ |∇u(z)|) dH n−1(z)

)
dt

)
d%

= C

ˆ b

a

( ˆ
{η=t}

( ˆ min{t−a, b−a
4
}

t−a
3

%−1(|u(z)|+ |∇u(z)|) d%

)
dH n−1(z)

)
dt

≤ C

ˆ
Zb
a

(|u(y)|+ |∇u(y)|) dy . (A.7)

A similar bound holds for ˆ
Zb
c

(|Tu|+ |∇Tu| dy .

For u smooth, it is easy to see that Tu is weakly differentiable and, by the above
estimates, that Tu ∈ W 1,1(Ω;RN). For u ∈ W 1,1(Ω;RN), again let (uj) be a sequence
of smooth functions such that uj → u strongly in W 1,1(Ω;RN), and pointwise almost
everywhere. By (A.7) and Uniform Boundedness, (Tuj) is bounded in W 1,1(Ω;RN),
and hence there exists a subsequence that converges weakly* in BV(Ω;RN) to Tu, so
by (A.7) we have

ˆ
Ω

(|Tu|+ |∇Tu|) dy ≤ C

ˆ
Ω

(|u|+ |∇u|) dy ,

which establishes that indeed T is a linear continuous map from W 1,1(Ω;RN) into
W 1,1(Ω;RN). This completes the proof.
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A.2 Technical preliminaries for measure representation
In this section we establish some results that are key to proving the main result of this
section. First, we have the following elementary lemma.

Lemma A.3. Let ψ be a continuous non-decreasing function on an interval [a, b],
a < b. Then there exist a′ ∈ [a, a + 1

3
(b − a)] and b′ ∈ [b − 1

3
(b − a), b] such that

a ≤ a′ < b′ ≤ b, and 
ψ(t)− ψ(a′)

t− a′
≤ 3

ψ(b)− ψ(a)

b− a

ψ(b′)− ψ(t)

b′ − t
≤ 3

ψ(b)− ψ(a)

b− a

(A.8)

for all t ∈ (a′, b′).

Proof of Lemma A.3. Without loss of generality we may assume a = 0 and ψ(a) = 0.
Define

φ(t) := ψ(t)− 3t
ψ(b)

b
.

Let a′ be the point in [0, b] where φ attains its maximum and let b′ be the point where
φ attains its minimum. It follows clearly that (A.8) holds from this choice of a′ and b′:
note that when t > b

3
, since ψ is non-decreasing, 3tψ(b)

b
> ψ(b) ≥ ψ(b). Hence we

have φ(0) = 0 and φ(t) < 0, so it follows that a′ ≤ b
3
. We argue in a similar way to

show that b′ ≥ b− 1
3
b.

We now apply this result to establish the following.

Lemma A.4. Let V ⊂⊂ Ω and W ⊂ Ω be open sets satisfying Ω = V ∪ W . Let
v ∈ W 1,r(V ) and w ∈ W 1,r(W ) for r ∈ [1, n

n−1
). Let k ∈ N. Then there exists a

function z ∈ W 1,r
loc (Ω) and open sets V ′ ⊂ V and W ′ ⊂ W , such that V ′ ∪W ′ = Ω,

z = v on Ω \W ′, z = w on Ω \ V ′,

L n(V ′ ∩W ′) ≤ Ck−1 (A.9)

and

‖z‖W 1,r(V ′∩W ′) ≤ Ckn−1−n
r

(
‖v‖W 1,1(V ∩W ) + ‖w‖W 1,1(V ∩W ) + k‖w − v‖L1(V ∩W )

)
,

(A.10)
where C is a constant dependent on r, V and W .

Proof of Lemma A.4. Let η ∈ C∞c (Ω) be such that

η = 0 on Ω \ V and η = 1 on Ω \W . (A.11)
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By Sard’s Lemma, the image of the set of all critical points of η is a closed set of
measure zero. Hence, there exists a nondegenerate interval [a.b] ⊂ (0, 1) \ η({∇η =
0}). Take k ∈ N and define

f := 1 + |v|+ |w|+ |∇v|+ |∇w|+ k|w − v| .

Since {a < η < b} ⊂ V ∩W , we may find j ∈ {1, . . . , k} such that

ˆ
{aj<η<bj}

f dx ≤ 1

k

ˆ
V ∩W

f dx , (A.12)

where aj := a+ (j−1)(b−a)
k

and bj := a+ j(b−a)
k

. Now apply Lemma A.3 with

ψ(t) :=

ˆ
{η<t}

f dx ,

to find [a′, b′] ⊂ [aj, bj] such that b′ − a′ ≥ 1
3
(bj − aj), and

ˆ
{a′<η<t}

f dx ≤ 3
t− a′

b′ − a′

ˆ
{a′<η<b′}

f dx ,
ˆ
{t<η<b′}

f dx ≤ 3
b′ − t
b′ − a′

ˆ
{a′<η<b′}

f dx (A.13)

for all t ∈ (a′, b′). Now set

V ′ := Ω ∩ {η > a′} , W ′ := Ω ∩ {η < b′} ,

and

u :=


v on {η ≥ b′} ,

(η − a′)v + (b′ − η)w

b′ − a′
on {a′ ≤ η ≤ b′} ,

w on {η ≤ a′} .

By (A.11), it is clear that V ′ ⊂ V , W ′ ⊂ W , and V ′∪W ′ = Ω. Moreover, (A.9) holds
as |∇η| is bounded away from zero on {a < η < b} and b′ − a′ ≤ b−a

k
. It is easy to

verify that on {a′ < η < b′} we have

|u|+ |∇u| ≤ Cf .

Now use (A.12), (A.13) and Lemma A.2 to find a function z ∈ W 1,1(Ω) such that
z = u = v on {η ≥ b′} = Ω \W ′, z = u = w on {η ≤ a′} = Ω \ V ′, and (A.10) is
satisfied.
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A.3 Proof of measure representation
We first recall some key definitions. Let µ be a Radon measure on Ω̄, where Ω is a
bounded, open subset of Rn. Then we say that µ (strongly) represents F (u, ·) if

µ(U) = F (u, U)

for all open sets U ⊂ Ω. We say that µ weakly represents F (u, ·) if

µ(U) ≤ F (u, U) ≤ µ(Ū)

for all open sets U ⊂ Ω. The following two theorems are the main results of this
section. Note that the first one is Theorem 4.2.

Theorem A.5. Let f : RN×n → R be a continuous function satisfying the growth
condition (1.2) for some exponent 1 ≤ r < n

n−1
. Let u ∈ BV(Ω;RN) and Floc be as

defined in (1.4). Then if Floc(u,Ω) <∞, then there exists a non-negative, finite Radon
measure λ on Ω which represents Floc.

Theorem A.6. Let f : RN×n → R be a continuous function satisfying the growth
condition (1.2) for some exponent 1 ≤ r < n

n−1
. Let u ∈ BV(Ω;RN) and F be as

defined in (1.3). Then if F (u,Ω) < ∞, then there exists a non-negative, finite Radon
measure µ on Ω̄ which weakly represents F .

The following lemma is instrumental in our proofs of these two theorems.

Lemma A.7. Let f : RN×n → R be a continuous function satisfying the growth con-
dition (1.2) for some exponent 1 ≤ r < n

n−1
. Let V , W ⊂ Ω be open sets, V ⊂⊂ Ω

and Ω = V ∪W , and let u ∈ W 1,1(Ω;RN). Let F be as defined in (1.3). Then

F (u,Ω) ≤ F (u, V ) + F (u,W ) .

An identical assertion holds for Floc as defined in (1.4).

Proof of Lemma A.7. Let ε > 0. By the definition of F , there exist sequences (vk) ⊂
W 1,r(V ;RN) and (wk) ⊂ W 1,r(W ;RN) such that

vk
∗
⇀ u weakly* in BV(V ;RN) and wk

∗
⇀ u weakly* in BV(W ;RN) ,

and (by eliminating the first terms of the sequences if necessary),
ˆ
V

f(∇vk) dx ≤ F (u, V ) + ε ,
ˆ
W

f(∇wk) dx ≤ F (u,W ) + ε .
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Moreover, by taking subsequences if necessary, we can ensure

‖vk − u‖L1(V ∩W ) ≤
1

k
and ‖wk − u‖L1(V ∩W ) ≤

1

k
(A.14)

for all k. Using Lemma A.4, for each k we can find open sets Vk ⊂ V , Wk ⊂ W ,
and functions (zk) ⊂ W 1,r(Ω;RN), such that Vk ∪Wk = Ω, zk = vk on Ω \Wk, and
zk = wk on Ω\Vk. Moreover, by growth condition (1.2), (A.14), and since by the Uni-
form Boundedness Principle the sequences (vk), (wk) are bounded in W 1,1(V ;RN),
W 1,1(W ;RN) respectively,ˆ

Vk∩Wk

f(∇zk) dx ≤ L

ˆ
Vk∩Wk

(1 + |∇zk|r) dx

≤ Ck−1 + Ckr(n−1)−n
(
‖v‖W 1,1(V ∩W ) + ‖w‖W 1,1(V ∩W ) + k‖w − v‖L1(V ∩W )

)r
≤ Ckr(n−1)−n . (A.15)

Thereforeˆ
Ω

f(∇zk) dx ≤
ˆ
V

f(∇vk) dx+

ˆ
W

f(∇wk) dx+ Ckr(n−1)−n . (A.16)

Now we show that zk
∗
⇀ u in BV(Ω;RN). Certainly, since zk = vk on Ω\Wk, zk = wk

on Ω\Vk, and by (A.15) theW 1,r-norm of each zk is bounded on Vk∩Wk, the sequence
is bounded in W 1,1(Ω;RN). Moreover, using the fact that L n(Vk ∩ Wk) → 0 and
Rellich-Kondrachov, we have that each subsequence of (zk) has a sub-subsequence
converging in L1(Ω;RN) to u. Therefore it follows that zk

∗
⇀ u in BV(Ω;RN) as

required. Hence by the definition of F and (A.16)

F (u,Ω) ≤ lim inf
k→∞

ˆ
Ω

f(∇zk) dx ≤ F (u, V ) + F (u,W ) + 2ε ,

which concludes the proof. The proof for Floc is essentially the same.

Proof of Theorem A.6. First we assume in addition that f satisfies the coercivity con-
dition

f(ξ) ≥ c0|ξ| (A.17)

for some constant c0 > 0, for all ξ ∈ RN×n. Using Proposition 3.2, let (uk) ⊂
W 1,r(Ω;RN) be a minimising sequence for F (u,Ω), i.e. uk

∗
⇀ u in BV(Ω;RN) and

lim
k→∞

ˆ
Ω

f(∇uk) dx = F (u,Ω) .

Note that since the sequence f(∇uj)L n is bounded in M (Ω̄), we that have for some
subsequence (for convenience not relabelled) there exists a measure µ in Ω̄ such that

f(∇uj)
∗
⇀ µ in M (Ω̄) .
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Clearly, since f is non-negative, µ must also be a non-negative measure on Ω̄. In
particular, we have

µ(Ω̄) = F (u,Ω) (A.18)

and for every open set V ⊂ Ω

F (u, V ) ≤ lim inf
k→∞

ˆ
V

f(∇uk) dx ≤ µ(V̄ ) . (A.19)

Now let V ⊂ Ω be an open set and fix ε > 0. Take an open set Z ⊂⊂ V such that

µ(V )− µ(Z) < ε .

Now use Lemma A.7, (A.18) and (A.19) to get

µ(V ) ≤ µ(Z) + ε = µ(Ω̄)− µ(Ω̄ \ Z) + ε

≤ F (u,Ω)−F (u, Ω̄ \ Z) + ε

≤ F (u, V ) + ε .

Let ε→ 0 to obtain
µ(V ) ≤ F (u, V ).

Now we show how the coercivity assumption (A.17) may be removed. Define
f ε : RN×n → R as

f ε(ξ) := f(ξ) + ε|ξ| ,

for all ξ ∈ RN×n, for some ε > 0. Define F ε to be the corresponding Lebesgue-Serrin
extension of f ε as in (1.3). By the above part of the proof, we obtain a measure µε

weakly representing F ε. Letting (uk) ⊂ W 1,r(Ω;RN) be a minimising sequence for
F ε(u,Ω), we have

µε(Ω̄) = F ε(u,Ω) ≤ F (u,Ω) + ε sup
k
‖uk‖W 1,1 ≤ C . (A.20)

Moreover, if U ⊂ Ω is open, then clearly

F (u, U) ≤ lim inf
k→∞

ˆ
U

f(∇uk) dx ≤ lim inf
k→∞

ˆ
U

f ε(∇uk) dx ≤ µε(Ū) . (A.21)

Hence, by (A.20), we may select εj → 0 such that the sequence µεj converges weakly*
in the sense of measures to a finite, non-negative, Radon measure µ. Then, by (A.21),

F (u, U) ≤ µεj(Ū) ,

and passing to the weak* limit,

F (u, U) ≤ µ(Ū) .
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Conversely, let ε′ > 0, and take a sequence (vk) ⊂ W 1,r(U ;RN) satisfying vk
∗
⇀ u

weakly* in BV(U ;RN) and
ˆ
U

f(∇vk) dx ≤ F (u, U) + ε′

for all k. Then, for j large enough, we have
ˆ
U

f εj(∇vk) dx =

ˆ
U

(
f(∇vk) + εj|vk|+ εj|∇vk|

)
dx ≤ F (u, U) + 2ε′ ,

and so

µεj(U) ≤ F εj(u, U) ≤ lim inf
k→∞

ˆ
U

f εj(∇vk) dx ≤ F (u, U) + 2ε′ .

Now we pass to the weak* limit and let ε′ → 0 to conclude the proof.

Now we show that we also have strong measure representation for F if certain
technical conditions are satisfied. First we establish the following lemma, which will
also play a part in our proof of Theorem A.5.

Lemma A.8. Let f : RN×n → R be a continuous function satisfying the growth condi-
tion (1.2) for some exponent 1 ≤ r < n

n−1
. Let u ∈ BV(Ω;RN) and F be as defined in

(1.3). Let U be an open subset of Ω. If µ is a Radon measure on Ω̄ weakly representing
F (u, ·) and

inf
K
{F (u, U \K) : K ⊂ U is compact } = 0 , (A.22)

then
µ(U) = F (u, U) .

An identical statement holds for Floc as defined in (1.4).

Proof of Lemma A.8. We need to show F (u, U) ≤ µ(U). Let ε > 0 and, using (A.22),
let K ⊂ U be a compact set such that

F (u, U \K) < ε .

Now take an open set W such that K ⊂ W ⊂⊂ U and apply Lemma A.7 to get

F (u, U) ≤ F (u,W ) + F (u, U \K)

≤ F (u,W ) + ε

≤ µ(W̄ ) + ε

≤ µ(U) + ε .

Take ε→ 0 to complete the proof. The proof for Floc is the same.

This allows us to deduce
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Corollary A.9. Let f : RN×n → R be a continuous function satisfying the growth
condition (1.2) for some exponent 1 ≤ r < n

n−1
. Let u ∈ BV(Ω;RN) and F be as

defined in (1.3). If µ is a finite Radon measure on Ω̄ weakly representing F (u, ·), then
µ represents F (u, ·) if and only if there exists a Radon measure ν such that

F (u, U) ≤ ν(U) (A.23)

for all open subsets U ⊂ Ω.

Proof of Corollary A.9. If (A.23) is satisfied, then clearly (A.22) holds for any open
set U ⊂ Ω so, by Lemma A.8, µ represents F (u, ·). The converse implication is
trivial, taking ν = µ.

We are now in a position to prove the remaining main theorem of this section.

Proof of Theorem A.5. Again, assume first that the coercivity condition (A.17) is sat-
isfied. Using the proof of Theorem A.6, there exists a Radon measure λ on Ω̄ such that
for every open set U ⊂ Ω,

λ(U) ≤ Floc(u, U) ≤ λ(Ū) .

For a given open set U ⊂ Ω, we shall show additionally that

λ(U) ≥ Floc(u, U).

Take an increasing sequence of open, bounded, smooth sets Uj ⊂⊂ U , j ∈ N, such
that Ūj ⊂ Uj+1 for all j and U =

⋃∞
j=1 Uj . By the definition of Floc, for each j ≥ 3

there exists a sequence (uj,k) ⊂ W 1,r
loc (Uj \ Ūj−2;RN) such that

uj,k
∗
⇀ u weakly* in BV(Uj \ Ūj−2;RN) as k →∞ ,

and ˆ
Uj\Ūj−2

f(∇uj,k) dx ≤ Floc(u, Uj \ Ūj−2) + 2−j . (A.24)

Fix positive integers αj , which will be determined later, and note that by taking a sub-
sequence (for convenience not relabelled) we may assume uj,k → u almost everywhere
in Uj \ Ūj−2 as k →∞, and

‖uj,k − u‖L1(Uj\Ūj−2) ≤ 2−j−kα−1
j .

Now use Lemma A.4 to connect uj,k to uj+1,k across Uj \ Ūj−1. There exist open sets
V +
j,k, V

−
j+1,k such that 

V +
j,k ⊂ Uj \ Ūj−2

V −j+1,k ⊂ Uj+1 \ Ūj−1

Uj+1 \ Ūj−2 = V +
j,k ∪ V

−
j+1,k

L n(V +
j,k ∩ V

−
j+1,k) ≤ Cj2

−j−kα−1
j ,
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and there exist functions (zj,k) ⊂ W 1,r(Uj+1 \ Ūj−2;RN) such that

zj,k =

{
uj,k on (Uj \ Ūj−2) \ V −j+1,k ,
uj+1,k on (Uj+1 \ Ūj−1) \ V +

j,k ,

andˆ
V +
j,k∩V

−
j+1,k

f(∇zj,k) dx ≤ L

ˆ
V +
j,k∩V

−
j+1,k

(
1 + |∇zj,k|r

)
dx

≤ LCj2
−j−kα−1

j + Cj(2
j+kαj)

r(n−1)−n
(
‖uj,k‖W 1,1(Uj\Ūj−1)

+ ‖uj+1,k‖W 1,1(Uj\Ūj−1) + 2j+kαj‖uj+1,k − uj,k‖L1(Uj\Ūj−1)

)r
≤ Cj(2

j+kαj)
r(n−1)−n ,

where Cj is a constant depending on j. Hence we may specify our choice of αj so that
α
r(n−1)−n
j Cj ≤ 1. Now define (zk) ⊂ W 1,r

loc (Ω \ U1;RN) by

zk :=

{
zj,k on V +

j,k ∩ V
−
j+1,k ,

uj+1,k on (Uj+1 \ Uj−1) \ (V +
j,k ∪ V

−
j+2,k) .

Now fix m ∈ N, m ≥ 2. We haveˆ
U\Ūm

f(∇zk) dx ≤
∞∑

j=m+1

ˆ
Uj\Ūj−1

f(∇zk) dx

≤
∞∑

j=m+1

( ˆ
Uj+1\Ūj−1

f(∇uj+1,k) dx

+

ˆ
Uj\Ūj−1

f(∇uj,k) dx+

ˆ
V +
j,k∩V

−
j+1,k

f(∇zj,k) dx

)
≤

∞∑
j=m+1

(
2Floc(u, Uj+1 \ Ūj−1) + 2−j+1 + 2(j+k)(r(n−1)−n)

)
≤

∞∑
j=m+1

(
2λ(Uj+2 \ Uj−1) + 2−j+1 + 2(j+k)(r(n−1)−n)

)
≤ 6λ(U \ Um−1) + 2−m+1 + 2k(r(n−1)−n)

∞∑
j=m+1

(2n−r(n−1))−j

≤ 6λ(U \ Um−1) + 2−m+1 + 2k(r(n−1)−n) · o(m) .

By the coercivity condition (A.17) and the above, we haveˆ
U\Ūm

|∇zk| ≤ C

ˆ
Ω\Ūm

f(∇zk) dx

≤ C6λ(U \ Um−1) + C

≤ C6Floc(u, U \ Um−1) + C
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for all k so, since Floc(u,Ω) <∞, the sequence (zk) is bounded inW 1,1(U \Ūm;RN).
Now note that

L n
( ∞⋃
j=1

(V +
j,k ∩ V

−
j+1,k)

)
≤

∞∑
j=1

L n(V +
j,k ∩ V

−
j+1,k)

≤
∞∑
j=1

Cj2
−j−kα−1

j

≤
∞∑
j=1

2−j−k

→ 0 as k →∞ .

Hence, arguing using Rellich-Kondrachov as in Lemma A.7, we have that zk
∗
⇀ u in

BV(U \ Ūm;RN). Therefore

Floc(u, U \ Ūm) ≤ 6λ(U \ Um−1) + 2−m+1 ,

and so

inf
K
{F (u, U \K) : K ⊂ U is compact } ≤ lim

m→∞
Floc(u, U \ Ūm)

≤ lim
m→∞

(
6λ(U \ Um−1) + 2−m+1

)
= 0 .

Thus condition (A.22) of Lemma A.8 is satisfied, allowing us to conclude that indeed

λ(U) = Floc(u, U) .

We remove the coercivity assumption (A.17) using the same argument as in the proof
of Theorem A.6.
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