
Chapter 7
String Theory as a Conformal Field Theory

We give an exposition of the classical system of a bosonic string and its quantization.
In bosonic string theory as a classical field theory we have the flat semi-

Riemannian manifold

(RD,η) with η = diag(−1,1, . . . ,1)

as background space and a world sheet in this space, that is a C∞-parameterization

x : Q→ R
D

of a surface W = x(Q) ⊂ R
D, where Q ⊂ R

2 is an open or closed rectangle. This
corresponds to the idea of a one-dimensional object, the string, which moves in the
space R

D and wipes out the two-dimensional surface W = x(Q). The classical fields
(that is the kinematic variables of the theory) are the components xμ : Q→ R of the
parameterization x = (x0,x1, . . . ,xD−1) : Q→ R

D of the surface W = x(Q)⊂ R
D.

7.1 Classical Action Functionals and Equations
of Motion for Strings

In classical string theory the admissible parameterizations, that is the dynamic vari-
ables of the world sheet, are those for which a given action functional is stationary.
A natural action of the classical field theory uses the “area” of the world sheet. One
defines the so-called Nambu–Goto action:

SNG(x) :=−κ
∫

Q

√
−detg dq0dq1,

with a constant κ ∈ R (the “string tension”, cf. [GSW87]). Here,

g := x∗η ,(x∗η)μν = ηi j∂μxi∂νx j,

is the metric on Q induced by x : Q→ R
D and the variation is taken only over those

parameterizations x, for which g is a Lorentz metric (at least in the interior of Q),
that is
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104 7 String Theory as a Conformal Field Theory

det(gμν) < 0.

Hence, (Q,g) is a two-dimensional Lorentz manifold, that is a two-dimensional
semi-Riemannian manifold with a Lorentz metric g.

From the action principle

d
dε

SNG(x+ εy)|ε=0 = 0

with suitable boundary conditions, one derives the equations of motion. Since it is
quite difficult to make calculations with respect to the action SNG, one also uses a
different action, which leads to the same equations of motion. The Polyakov action

SP(x,h) :=−κ
2

∫

Q

√
−det h hi j gi j dq0 dq1

depends, in addition, on a (Lorentz) metric h on Q. A separate variation of SP with
respect to h only leads to the former action SNG:

Lemma 7.1.
d

dε
SP(x,h+ ε f )|ε=0 = 0

holds precisely for those Lorentzian metrics h on Q which satisfy g = λh, where
λ : Q→ R+ is a smooth function. Substitution of h = 1

λ g into SP yields the original
action SNG.

Proof. In order to show the first statement let (h̃i j) be the matrix satisfying

2deth = h̃i jhi j, hi j = (deth)−1h̃i j.

Then h̃00 = h11, h̃11 = h00, and h̃01 =−h10. Hence,

√
−det(h+ ε f )(h+ ε f )i j =−(

√
−det(h+ ε f ))−1 ˜(h+ ε f )

i j

for symmetric f = ( fi j) with det(h+ ε f ) < 0, and it follows

SP(x,h+ ε f ) =
κ
2

∫

Q
(
√
−det(h+ ε f ))−1(h̃i j + ε f̃ i j)gi jdq0dq1.

Since hi j =−(−deth)−1h̃i j and h̃αβ fαβ = f̃ αβhαβ , we have

∂
∂ε

SP(x,h+ ε f )
∣
∣
∣
∣
ε=0

=
κ
2

∫

Q

(
f̃ i j

√
−deth

+
h̃i j f̃ αβhαβ

2
√
−deth

3

)

gi jdq0dq1

=
κ
2

∫

Q

f̃ i j
√
−deth

(
gi j−

1
2

hαβgαβhi j

)
dq0dq1.
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This implies that δSP(x,h) = 0 for fixed x leads to the “equation of motion”

gi j−
1
2

hαβgαβhi j = 0 (7.1)

for h. Equivalently, the energy–momentum tensor

Ti j := gi j−
1
2

hαβgαβhi j (7.2)

has to vanish. The solution h of (7.1) is g = λh with

λ =
1
2

hαβgαβ > 0

(λ > 0 follows from detg < 0 and deth < 0).
Substitution of the solution h = 1

λ g of the equation T = 0 in the action SP(x,h)
yields the original action SNG(x). �

Invariance of the Action. It is easy to show that the action SP is invariant with
respect to

• Poincaré transformations,
• Reparameterizations of the world sheet, and
• Weyl rescalings: h �→ h′ :=Ω2h.

SNG is invariant with respect to Poincaré transformations and reparameteriza-
tions only.

Because of the invariance with respect to reparameterizations, the action SP can
be simplified by a suitable choice of parameterization. To achieve this, we need the
following theorem:

Theorem 7.2. Every two-dimensional Lorentz manifold (M,g) is conformally flat,
that is there are local parameterizations ψ , such that for the induced metric g
one has

ψ∗g =Ω2η =Ω2
(
−1 0
0 1

)
(7.3)

with a smooth function Ω. Coordinates for which the metric tensor is of this form
are called isothermal coordinates.

For a positive definite metric g (on a surface) the existence of isothermal coor-
dinates can be derived from the solution of the Beltrami equation (cf. [DFN84, p.
110]). In the Lorentzian case the existence of isothermal coordinates is much easier
to prove. Since the issue of existence of isothermal coordinates has been neglected in
the respective literature and since it seems to have no relation to the Beltrami equa-
tion, a proof shall be provided in the sequel. A proof can also be found in [Dic89].

Proof. 1 Let x ∈ M and let ψ : R
2 ⊃ U → M be a chart for M with x ∈ ψ(U).

We denote the matrix representing ψ∗g by gμν ∈C∞(U,R). If we choose a suitable
linear map A∈GL(R2) and replaceψ withψ ◦A : A−1(U)→M, we can assume that

1 By A. Jochens
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(gμν(ξ )) = η =
(
−1 0
0 1

)
,

where ξ := ψ−1(x). We also have

det(gμν) = g11g22−g2
12 < 0

since g is a Lorentz metric. We define

a :=
√

g2
12−g11g22 ∈C∞(U,R).

By our choice of the chart ψ we have g22(ξ ) = 1. The continuity of g22 implies
that there is an open neighborhood V ⊂U of ξ with g22(ξ ′) > 0 for ξ ′ ∈V .

Now, there are two positive integrating factors λ ,μ ∈C∞(V ′,R+) and two func-
tions F,G ∈C∞(V ′,R) on an open neighborhood V ′ ⊂V of ξ , so that

∂1F = λ
√

g22, ∂2F = λ
g12 +a
√

g22
,

∂1G = μ
√

g22, ∂2G = μ
g12−a
√

g22
.

The existence of F and λ can be shown as follows: we apply to the function
f ∈C∞(V,R) defined by

f (t,x) := (g12(x, t)+a(x, t))/g22(x, t)

a theorem of the theory of ordinary differential equations, which guarantees the
existence of a family of solutions depending differentiably on the initial conditions
(cf. [Die69, 10.8.1 and 10.8.2]). By this theorem, we get an open interval J ⊂ R

and open subsets U0,U ⊂ R with ξ ∈U0 × J ⊂U × J ⊂ V , as well as a map φ ∈
C∞(J× J×U0,U), so that for all t,s ∈ J and x ∈U0 we have

d
dt
φ(t,s,x) = f (t,φ(t,s,x)) and φ(t, t,x) = x. (7.4)

Using the uniqueness theorem for ordinary differential equations, it can be shown
that ∂3φ is positive and that

φ(τ, t,x) ∈U0 ⇒ φ(s,τ,φ(τ, t,x)) = φ(s, t,x)

for t,s,τ ∈ J and x ∈U0. Defining

F(x, t) := φ(t0, t,x) and λ (x, t) :=
∂1F(x, t)
√

g22(x, t)
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for (x, t) ∈U0× J and a fixed t0 ∈ J we obtain functions F,λ ∈C∞(U0× J,R) with
the required properties. By the same argument we also obtain the functions G and
μ . The open subset V ′ ⊂V is the intersection of the domains of F and G.

For the map ϕ =
(
ϕ1

ϕ2

)
:=
(

F−G
F +G

)
∈C∞(V ′,R2) we have

∂1ϕ1 = (λ −μ)
√

g22, ∂2ϕ1 = λ
g12 +a
√

g22
−μ

g12−a
√

g22
,

∂1ϕ2 = (λ +μ)
√

g22, ∂2ϕ2 = λ
g12 +a
√

g22
+μ

g12−a
√

g22
.

After a short calculation we get

∂μϕρ∂νϕσηρσ = ∂μϕ1∂νϕ1−∂μϕ2∂νϕ2 = 4λμgμν ,

that is ϕ∗η = 4λμψ∗g. Furthermore,

detDϕ = ∂1ϕ1∂2ϕ2−∂1ϕ2∂2ϕ1 =−4λμa �= 0.

Hence, by the inverse mapping theorem there exists an open neighborhood
W ⊂V ′ of ξ , so that ϕ̃ := ϕ|W : W → ϕ(W ) is a C∞ diffeomorphism. ϕ∗η =
4λμψ∗g implies

η =
(
ϕ̃−1)∗ϕ∗η = 4λμ

(
ϕ̃−1)∗ψ∗g = 4λμ

(
ψ ◦ ϕ̃−1)∗ g.

Now ψ̃ := ψ ◦ ϕ̃−1 : ϕ(W )→M is a chart for M with x ∈ ψ̃(ϕ(W )) and we have

ψ̃∗g =Ω2η

with Ω := 1/(2
√
λμ). �

By Theorem 7.2 one can choose a local parameterization of the world sheet in
such a way that

h =Ω2η =Ω2
(
−1 0
0 1

)
.

This fixing of h is called conformal gauge. Even after conformal gauge fixing a
residual symmetry remains: it is easy to see that SP(x) in conformal gauge is invari-
ant with respect to conformal transformations on the world sheet. In this manner,
the conformal group Conf(R1,1)∼= Diff+(S)×Diff+(S) turns out to be a symmetry
group of the system, even if this holds only on the level of “constraints”. In any
case, the classical field theory of the bosonic string can be viewed as a conformally
invariant field theory.

To simplify the equations of motion and, furthermore, to present solutions as cer-
tain Fourier series, we need a generalization of Theorem 7.2, stating that (in the case
of closed strings, to which we restrict our discussion here) there exists a conformal
gauge not only in a neighborhood of any given point, but also in a neighborhood
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of a closed injective curve (as a starting curve for the “time τ = 0”). The existence
of such isothermal coordinates can be shown by the same argumentation as Theo-
rem 7.2. Finally, for the variation in the conformal gauge, it can be assumed that
isothermal coordinates exist on the rectangle

Q = [0,2π]× [0,2π]

and that σ �→ x(0,σ), σ ∈ [0,2π] describes a simple closed curve. This is possible
at least up to an irrelevant distortion factor (cf. [Dic89]).

Theorem 7.3. The variation of SNG or SP in the conformal gauge leads to the equa-
tions of motion on Q = [0,2π]× [0,2π]: These are the two-dimensional wave equa-
tions

∂ 2
0 x−∂ 2

1 x = 0 resp. xττ − xσσ = 0

with the constraints

〈xσ ,xτ〉= 0 = 〈xσ ,xσ 〉+ 〈xτ ,xτ〉, 〈xτ ,xτ〉< 0,

imposed by the conformal gauge.

By xσ we denote the partial derivative of x = x(τ,σ) with respect to σ (that is
τ := q0,σ := q1), and 〈v,w〉 is the inner product 〈v,w〉= vμwνημν for v,w ∈ R

D.

Proof. To derive the equations of motion and the constraints we start by writing SP

in the conformal gauge h =Ω2η with
√
−deth =Ω2 and hi jgi j =Ω2(−g00 +g11):

SP(x) = SP(x,Ω 2η) =
κ
2

∫

Q
(〈∂0x,∂0x〉−〈∂1x,∂1x〉)dq0dq1.

For y : Q→ R
D and suitable boundary conditions y|∂Q = 0 we have

∂
∂ε

SP(x+ εy)
∣
∣
∣
∣
ε=0

= κ
∫

Q
(〈∂0x,∂0y〉−〈∂1x,∂1y〉)dq0dq1

= κ
∫

Q
〈∂11x−∂00x,y〉dq0dq1

(integration by parts). This yields

∂11x−∂00x = 0

as the equations of motion in the conformal gauge.

Because of the description of the metric h by h = 1
λ g with λ > 0, that is

λh = λ (hi j) =
(
〈xτ ,xτ〉 〈xσ ,xτ〉
〈xτ ,xσ 〉 〈xσ ,xσ 〉

)
,

the gauge fixing h =Ω2η implies the conditions

〈xσ ,xτ〉= 0, 〈xσ ,xσ 〉=−〈xτ ,xτ〉> 0. �
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The constraints are equivalent to the vanishing of the energy–momentum T ,
which is given by

Ti j = 〈xi,x j〉−
1
2

hi jh
kl〈xk,xl〉, i, j,k, l ∈ {τ,σ}

(see (7.2) and cf. [GSW87, p. 62ff]).
The solutions of the two-dimensional wave equations are

x(τ,σ) = xR(τ−σ)+ xL(τ+σ)

with two arbitrary differentiable maps xR and xL on Q with values in R
D. For the

closed string we get on Q := [0,2π]× [0,2π] (that is x(τ,σ) = x(τ,σ + 2π)) the
following Fourier series expansion:

xμR(τ−σ) =
1
2

xμ0 +
1

4πκ
pμ0 (τ−σ)+

i√
4πκ ∑n �=0

1
n
αμ

n e−in(τ−σ),

xμL (τ+σ) =
1
2

xμ0 +
1

4πκ
pμ0 (τ+σ)+

i√
4πκ ∑n �=0

1
n
αμ

n e−in(τ+σ). (7.5)

x0 and p0 can be interpreted as the center of mass and the center of momentum,
respectively, while αμ

n , αν
n are the oscillator modes of the string. xL and xR are

viewed as “left movers” and “right movers”. We have xμ0 , pμ0 ∈ R and αμ
n ,αν

m ∈ C.
αν

m is not the complex conjugate of αν
m, but completely independent of αν

m. For xR

and xL to be real, it is necessary that

(αμ
n )∗ =
(
αμ
−n

)
and (αμ

n )∗ =
(
αμ
−n

)
(7.6)

hold for all μ ∈ {0, . . . ,D− 1} and n ∈ Z \ {0}, where c �→ c∗ denotes the com-
plex conjugation. We let αμ

0 := αμ
0 := 1√

4πκ pμ0 . The x = xL + xR with (7.5) can be
written as

x(σ ,τ) = x0 +
2√
4πκ

α0τ+
i√

4πκ ∑n �=0

1
n

(
αne−in(τ−σ) +αne−in(τ+σ)

)
.

Hence, arbitrary αn,αn,x0, p0 with (7.6) yield solutions of the one-dimensional
wave equation. In order that these solutions are, in fact, solutions of the equations
of motion for the actions SNG or SP, they must, in addition, respect the conformal
gauge. Using

Ln :=
1
2 ∑k∈Z

〈αk,αn−k〉 and Ln :=
1
2 ∑k∈Z

〈αk,αn−k〉 for n ∈ Z, (7.7)

the gauge condition can be expressed as follows:
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Lemma 7.4. A parameterization x(τ,σ) = xL(τ − σ) + xR(τ + σ) of the world
sheet with xR,xL as in (7.5) and (7.6) gives isothermal coordinates if and only if
Ln = Ln = 0 for all n ∈ Z.

Proof. We have isothermal coordinates if and only if

〈xτ + xσ ,xτ + xσ 〉= 〈xτ − xσ ,xτ − xσ 〉= 0.

Using the identities

xτ − xσ =
2√
4πκ ∑n∈Z

αne−in(τ−σ) and

xτ + xσ =
2√
4πκ ∑n∈Z

αne−in(τ+σ),

we get

〈xτ − xσ ,xτ − xσ 〉= 0

⇐⇒ 0 =

〈

∑
n∈Z

αne−in(τ−σ),∑
n∈Z

αne−in(τ−σ)

〉

⇐⇒ 0 = ∑
n∈Z

∑
k∈Z

e−i(n+k)(τ−σ)〈αn,αk〉

⇐⇒ 0 = ∑
m∈Z

∑
n+k=m

e−im(τ−σ)〈αn,αk〉

⇐⇒ ∀m ∈ Z : ∑
n+k=m

〈αn,αk〉= 0

⇐⇒ ∀m ∈ Z : ∑
k∈Z

〈αm−k,αk〉= 0

⇐⇒ ∀m ∈ Z : Lm = 0.

The same argument holds for xτ + xσ and Lm. �

Altogether, we have the following:

Theorem 7.5. The solutions of the string equations of motion are the functions

x(τ,σ) = x0 +
2√
4πκ

α0τ+
i√

4πκ ∑n �=0

1
n

(
αne−in(τ−σ) +αne−in(τ+σ)

)
,

for which the conditions (7.6) and Ln = Ln = 0 hold.

For a connection of the energy–momentum tensor T of a conformal field theory
with the Virasoro generators Ln and Ln we refer to (9.3) and to Sect. 10.5 in the
context of conformal vertex operators.

The oscillator modes αμ
n and αν

m are observables of the classical system. Obvi-
ously, they are constants of motion. Hence, one should try to quantize the αμ

n ,αν
m.
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In order to quantize the classical field theory of the bosonic string one needs the
Poisson brackets of the classical system:

{αμ
m ,αν

n } = imημνδm+n = {αμ
m,αν

n}, (7.8)

{αμ
m ,αν

n} = 0, (7.9)
{

pμ0 ,xν0
}

= ημν , (7.10)
{

xμ0 ,xν0
}

=
{

xμ0 ,αν
m

}
=
{

xμ0 ,αν
m

}
= 0, (7.11)

for all μ ,ν ∈ {0, . . . ,D−1} and m,n∈Z (here and in the following we set 4πκ = 1).
Observe that for each single index ν the collection of the observables αν

n ,n ∈ Z,
define a Lie algebra with respect to the Poisson bracket which is isomorphic to the
Heisenberg algebra.

Lemma 7.6. For n,m ∈ Z one has

{Lm,Ln}= i(n−m)Lm+n, {Lm,Ln}= i(n−m)Lm+n,

and {Lm,Ln}= 0.

This follows from the general formula

{AB,C}= A{B,C}+{A,C}B

for the Poisson bracket.

7.2 Canonical Quantization

In general, quantization of a classical system shall provide quantum models reflect-
ing the basic properties of the original classical system. A common quantization
procedure is canonical quantization. In canonical quantization a complex Hilbert
space H has to be constructed in order to represent the quantum mechanical states
as one-dimensional subspaces of H and to represent the observables as self-adjoint
operators in H. (The notion of a self-adjoint operator is briefly recalled on p. 130.)
Thereby the relevant classical observables f ,g, . . . have to be replaced with opera-
tors f̂ , ĝ such that the Poisson bracket is preserved in the sense that it is replaced
with the commutator of operators in H

{·, ·} �−→−i[·, ·].

Hence, for the relevant f ,g, . . . the following relations should be satisfied on a
common domain of definitions of the operators

[ f̂ , ĝ] =−i{̂ f ,g}.
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In addition, some natural identities have to be satisfied. For example, in the sit-
uation of the classical phase space R

2n with its Poisson structure on the space of
observables f : R

2n → C induced by the natural symplectic structure on R
2n it is

natural to require the Dirac conditions:

1. 1̂ = idH,
2. [q̂μ , p̂ν ] = iδ μν , [q̂μ , q̂ν ] = [p̂μ , p̂ν ] = 0,

with respect to the standard canonical coordinates (qμ , pν) of R
2n.

In general, one cannot quantize all classical observables (due to a result of van
Hove) and one chooses a suitable subset A which can be assumed to be a Lie
algebra with respect to the Poisson bracket. The canonical quantization of this sub-
algebra A of the Poisson algebra of all observables means essentially to find a
representation of A in the Hilbert space H.

The Harmonic Oscillator. Let us present as an elementary example a canonical
quantization of the one-dimensional harmonic oscillator. The classical phase space
is R

2 with coordinates (q, p). The Poisson bracket of two classical observables f ,g,
that is smooth functions f ,g : R

2 → C, is

{ f ,g}=
∂ f
∂q

∂g
∂ p

− ∂ f
∂ p

∂g
∂q

.

The hamiltonian function (that is the energy) of the harmonic oscillator is
h(q, p) = 1

2 (q2 + p2). The set of observables one wants to quantize contains at
least the four functions 1, p,q,h. Because of {1, f}= 0,{q, p}= 1,{h, p}= q, and
{h,q}=−p the vector space A generated by 1,q, p,h is a Lie algebra with respect
to the Poisson bracket.

As the Hilbert space of states one typically takes the space of square integrable
functions H := L2(R) in the variable q. The quantization of 1 is prescribed by the
first Dirac condition. As the quantization of q one then chooses the position oper-
ator q̂ = Q defined by ϕ(q) �→ qϕ(q) with domain of definition DQ = {ϕ ∈ H :∫
R
|qϕ(q)|2dq < ∞}. Q is an unbounded self-adjoint operator. This holds also for

the momentum operator P which is the quantization of p: P = p̂. P is defined as
P(ϕ) = −i ∂ϕ(q)

∂q for ϕ in the space D of all smooth functions on R with compact
support and can be continued to DP such that the continuation is self-adjoint. Ob-
serve that D is dense in H. The second Dirac condition is satisfied on D, i.e

[Q,P]ϕ = iϕ,ϕ ∈ D.

Finally, the quantization ĥ of the hamiltonian function h is the hamiltonian oper-
ator H, given by

H(ϕ) =
1
2

(
∂ 2ϕ
∂q2 (q)+q2ϕ(q)

)

on D with domain DH such that H is self-adjoint. It is easy to verify [H,Q] =
−iP, [H,P] = iQ on D from which we deduce [â, b̂] = −i{̂a,b} for all a,b ∈ A
on D.
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Note that ρ(a) := iâ defines a representation of A in H.
A different realization of a canonical quantization of the harmonic oscillator

is the following. The Hilbert space is the space H = �2 of complex sequence
z = (zν)ν∈N which are square summable ‖z‖2 = ∑∞

ν=0 |zν |2 < ∞. Let (en)ν∈N be
the standard (Schauder) basis of �2, that is en = (δ k

n ). By

H(en) := (n+
1
2
)en,

A∗(en) :=
√

2n+2en+1,

A(e0) := 0,A(en+1) :=
√

2n+2en,

we define operators H,A,A∗ on the subspace D⊂H of finite sequences, that is finite
linear combinations of the ens. H is an essentially self-adjoint operator and A∗ is the
adjoint of A as the notation already suggests. (More precisely, A and A∗ are the
restrictions to D of operators which are adjoint to each other.)

With Q := 1
2 (A + A∗) and P := 1

2 (A−A∗) the operators idH,Q,P,H satisfy in D
the same commutation relations

[Q,P] = i idH, [H,Q] =−iP, [H,P] = iQ

as before, and therefore constitute another canonical quantization of A . The two
quantizations are equivalent.

Note that D can be identified with the space of complex-valued polynomials C[T ]
by en �→ T n. This opens the possibility to purely algebraic methods in quantum field
theory by restricting all operations to the vector space D = C[T ] as, e.g., in the
quantization of strings (see below), in the representation of the Virasoro algebra
(cf. Sect. 6.5), or in the theory of vertex operators (cf. Chap. 10).

For obvious reasons, A is called the annihilation operator and A∗ is called the
creation operator.

Returning to the question of quantizing a string one observes immediately that for
any fixed index μ the Poisson brackets of the (αμ

m) are those of an infinite sequence
of one-dimensional harmonic oscillators (up to a constant). The corresponding os-
cillator algebra A generated by (αμ

m) (with fixed μ) can therefore be interpreted as
the algebra of an infinite dimensional harmonic oscillator. For a fixed index μ > 0
(which we omit for the rest of this section) the relevant Poisson brackets of the
oscillator algebra A are, according to (7.8),

{αm,αn}= imδn+m,{1,αn}= 0.

After quantization the operators an := α̂n generate a Lie algebra which is the
complex vector space generated by an,n ∈ Z, and Z (sometimes denoted Z = 1)
with the Lie bracket given by

[am,an] = mδn+mZ, [Z,am] = 0.

We see that this Lie algebra is nothing else than the Heisenberg algebra H
(cf. (4.1)).
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We conclude that constructing a canonical quantization of the infinite dimen-
sional harmonic oscillator is the same as finding a representation ρ : H→ End D of
the Heisenberg algebra H in a suitable dense subspace D ⊂H of a Hilbert space H

with ρ(Z) = idH.

Fock Space Representation. As the appropriate Fock space (that is representation
space) we choose the complex vector space

S := C[T1,T2, . . .] (7.12)

of polynomials in an infinite number of variables. We have to find a representation
of the Heisenberg algebra in EndCS. Define

ρ(an) :=
∂
∂Tn

for n > 0,

ρ(a0) := μ idS where μ ∈ C,

ρ(a−n) := nTn for n > 0, and

ρ(Z) := idS.

Then the commutation relations obviously hold and the representation is irre-
ducible. Moreover, it is a unitary representation in the following sense:

Lemma 7.7. For each μ ∈ R there is a unique positive definite hermitian form on
S, so that H(1,1) = 1 (1 stands for the vacuum vector) and

H(ρ(an) f ,g) = H( f ,ρ(a−n)g)

for all f ,g ∈ S and n ∈ Z, n �= 0.

Proof. First of all one sees that distinct monomials f ,g ∈ S have to be orthogonal
for such a hermitian form H on S. (The monomials are the polynomials of the form
T k1

n1 T k2
n2 . . .T kr

nr
with n j,k j ∈ N for j = 1,2, . . . ,r.) Given two distinct monomials f ,g

there exist an index n ∈ N and exponents k �= l, k, l ≥ 0, such that f = T k
n f1,g =

T l
n g1 for suitable monomials f1,g1 which are independent of Tn. Without loss of

generality let k < l. Then

H((ρ(an))k+1 f ,T l−k−1
n g1) = H((

∂
∂Tn

)k+1T k
n f1,T

l−k−1
n g1)

= H(0,T l−k−1
n g1)

= 0

and

H((ρ(an))k+1 f ,T l−k−1
n g1) = H( f ,(ρ(a−n)k+1T l−k−1

n g1))
= H( f ,nk+1T l

n g1)
= H( f ,g)
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imply H( f ,g) = 0. Moreover,

H( f , f ) = H( f ,n−k(ρ(an))k f1)
= n−kH(ρ(an)kT k

n f1, f1)

=
k!
nk H( f1, f1).

Using H(1,1) = 1, it follows for monomials f = T k1
n1 T k2

n2 . . .T kr
nr

with n1 < n2

< .. . < nr

H( f , f ) =
k1!k2! . . .kr!
nk1 nk2 . . .nkr

. (7.13)

Since the monomials constitute a (Hamel) basis of S, H is uniquely determined
as a positive definite hermitian form by (7.13) and the orthogonality condition. Re-
versing the arguments, by using (7.13) and the orthogonality condition H( f ,g) = 0
for distinct monomials f ,g ∈ S as a definition for H, one obtains a hermitian form
H on S with the required properties. �

Note that ρ(an)∗ = ρ(a−n) by the last result and for each n > 0 the operator
ρ(an) is an annihilation operator while ρ(an)∗ is a creation operator.

7.3 Fock Space Representation of the Virasoro Algebra

In order to obtain a representation of the Virasoro algebra Vir on the basis of the
Fock space representation ρ : H → End(S) of the Heisenberg algebra described in
the last section it seems to be natural to use the definition of the Virasoro observables
Ln in classical string theory, cf. (7.7),

Ln =
1
2 ∑k∈Z

αkαn−k =
1
2 ∑k∈Z

αn−kαk,

which satisfy the Witt relations (up to the constant i, see Lemma 7.6).
In a first naive attempt one could try to define the operators Ln : S → S by

Ln = 1
2 ∑k∈Z akan−k resp. Ln = 1

2 ∑k∈Zρ(ak)ρ(an−k). But this procedure is not well-
defined on S, since

ρ(ak)ρ(an−k) �= ρ(an−k)ρ(ak),

in general.
However, the normal ordering

:ρ(ai)ρ(a j): :=

{
ρ(ai)ρ(a j) for i≤ j

ρ(a j)ρ(ai) for i > j

defines operators

ρ(Ln) : S→ S, ρ(Ln) :=
1
2 ∑k∈Z

:ρ(ak)ρ(an−k): .
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The ρ(Lm) are well-defined operators, since the application to an arbitrary poly-
nomial P ∈ S = C[T1,T2, . . .] yields only a finite number of nonzero terms. The
normal ordering constitutes a difference compared to the classical summation for
the case n = 0 only. This follows from

ρ(ai)ρ(a j) = ρ(a j)ρ(ai) for i+ j �= 0,

:ρ(ak)ρ(a−k): = ρ(a−k)ρ(ak) for k ∈ N.

Consequently, the operators ρ(Ln) can be represented as

ρ(L0) =
1
2
ρ(a0)

2 + ∑
k∈N1

ρ(a−k)ρ(ak),

ρ(L2m) =
1
2
(ρ(am))2 + ∑

k∈N1

ρ(am−k)ρ(am+k),

ρ(L2m+1) = ∑
k∈N0

ρ(am−k)ρ(am+k+1),

for m ∈ N0 (here Nk = {n ∈ Z : n≥ k}).
We encounter normal ordering as an important tool in a more general context in

Chap. 10 on vertex algebras.

Theorem 7.8. In the Fock space representation we have

[Ln,Lm] = (n−m)Ln+m +
n

12
(n2−1)δn+mid

(with Ln instead of ρ(Ln)). Hence, it is a representation of the Virasoro algebra.

Proof. First of all we show

[Ln,am] =−mam+n, (7.14)

where m,n ∈ Z, using the commutation relations for the ans. (Here and in the fol-
lowing we write Ln instead of ρ(Ln) and an instead of ρ(an).) Let n �= 0.

Lnam =
1
2 ∑k∈Z

an−kakam

=
1
2 ∑k∈Z

an−k(amak + kδk+m)

=
1
2 ∑k∈Z

((aman−k +(n− k)δn+m−k)ak + kδk+man−k)

= amLn +
1
2
(−man+m−man+m)

= amLn−man+m.
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The case n = 0 is similar. From [Ln,am] =−man+m one can deduce

[[Ln,Lm],ak] =−k(n−m)an+m+k. (7.15)

In fact,

LnLmak = Ln(akLm− kam+k)
= akLnLm− kan+kLm− kLnam+k.

Hence,

[Ln,Lm]ak = ak[Ln,Lm]+ k[Lm,an+k]− k[Ln,am+k]

= ak[Ln,Lm]− k(n+ k)am+n+k + k(m+ k)am+n+k

= ak[Ln,Lm]− k(n−m)an+m+k.

It is now easy to deduce from (7.14) and (7.15) that for every f ∈ S with

[Ln,Lm] f = (n−m)Ln+m f +
n
12

(n2−1)δn+m f

and every k ∈ Z we have

[Ln,Lm](ak f ) = (n−m)Ln+m(ak f )+
n

12
(n2−1)δn+m(ak f ).

As a consequence, the commutation relation we want to prove has only to be
checked on the vacuum vector Ω = 1 ∈ S. The interesting case is to calculate
[Ln,L−n]Ω. Let n > 0. Then LnΩ = 0. Hence [Ln,L−n]Ω = LnL−nΩ. In case of
n = 2m+1 we obtain

L−nΩ =
1
2 ∑k∈Z

a−n−kakΩ

=
1
2 ∑k∈Z

a−n+ka−kΩ

=
1
2

n

∑
k=0

a−n+ka−kΩ

= μnTn +
1
2

n−1

∑
k=1

k(n− k)TkTn−k

= μnTn +
m

∑
k=1

k(n− k)TkTn−k =: Pn.

Now, alan−lPn �= 0 holds for l ∈ {0,1, . . .n} only and we infer alan−lPn =
l(n− l),1≤ l ≤ n−1, and alan−lPn = μ2n for l = 0, l = n. It follows that
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[Ln,L−n]Ω = μ2n+
m

∑
k=1

k(n− k)

= 2nL0Ω+n
m

∑
k=1

k−
m

∑
k=1

k2

= 2nL0Ω+n
m
2

(m+1)− 1
6

m(m+1)(2m+1)

= 2nL0Ω+
n
3

m(m+1)

= 2nL0Ω+
n

12
(n2−1).

The case n = 2m can be treated in the same manner. Similarly, one checks that
[Ln,Lm]Ω = (n−m)Ln+m for the relatively simple case n+m �= 0. �

Another proof can be found, for instance, in [KR87, p. 15ff]. Here, we wanted
to demonstrate the impact of the commutation relations of the Heisenberg algebra
respectively the oscillator algebra A .

Corollary 7.9. The representation of Theorem 7.8 yields a positive definite unitary
highest-weight representation of the Virasoro algebra with the highest weight c =
1,h = 1

2μ
2 (cf. Chap. 6).

Proof. For the highest-weight vector v0 := 1 let

V := span
C
{Lnv0 : n ∈ Z}.

Then the restrictions of ρ(Ln) to the subspace V ⊂ S of S define a highest-weight
representation of Vir with highest weight (1, 1

2μ
2) and Virasoro module V . �

Remark 7.10. In most cases one has S = V . But this does not hold for μ = 0, for
instance.

More unitary highest-weight representations can be found by taking tensor prod-
ucts: for f ⊗g ∈V ⊗V let

(ρ⊗ρ)(Ln)( f ⊗g) := (ρ(Ln) f )⊗g+ f ⊗ (ρ(Ln)g).

As a simple consequence one gets

Theorem 7.11. ρ ⊗ ρ : Vir → EndC(V ⊗V ) is a positive definite unitary highest-
weight representation for the highest weight c = 2,h = μ2. By iteration of this pro-
cedure one gets unitary highest-weight representations for every weight (c,h) with
c ∈ N1 and h ∈ R+.

For the physics of strings, these representations resp. quantizations are not suffi-
cient, since only some of the important observables are represented. It is our aim in
this section, however, to present a straightforward construction of a unitary Verma
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module with c > 1 and h ≥ 0 for the discussion in Chap. 6 based on quantization.
Indeed, the starting point was the attempt of quantizing string theory. But for the
construction of the Verma module only the Fock space representation of the Heisen-
berg algebra as the algebra of the infinite dimensional harmonic oscillator was used
by restricting to one single coordinate.

We now come back to strings in taking care of all coordinates xμ ,μ ∈ {0,1,
. . .d−1}.

7.4 Quantization of Strings

In (non-compactified bosonic) string theory, the Poisson algebra

A := C1⊕
D−1⊕

μ=0

(Cxμ0 ⊕Cpμ0 )⊕
D−1⊕

μ=0

⊕

m�=0

(Cαμ
m)

of the classical oscillator modes and of the coordinates xμ0 , pν0 has to be quantized.
(See (7.8) for their Poisson brackets.) Equivalently, one has to find a representation
of the string algebra

L := C1⊕
D−1⊕

μ=0

(Cx̂μ0 ⊕Cp̂μ0 )⊕
D−1⊕

μ=0

⊕

m�=0

(Caμm)

with the following Lie brackets

{aμm,aνn} = mημνδm+n,

{p̂μ0 , x̂ν0} = −iημν ,

{x̂μ0 , x̂ν0} = {x̂μ0 ,aνm}= 0,

according to (7.8).
The corresponding Fock space is

S := C[T μ
n : n ∈ N0,μ = 0, . . . ,D−1]

and the respective representation is given by

ρ(am) := ημν ∂
∂Tν

m
for m > 0,

Pμ := ρ(aμ0 ) := iημν ∂
∂T μ

0
(αμ

0 = pμ0 if 4πκ = 1),

ρ(aμ−m) := mT μ
m for m > 0,

Qμ := ρ(x̂μ0 ) := T μ
0 .
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The natural hermitian form on S with H(1,1) = 1 and

H(ρ(αμ
m) f ,g) = H( f ,ρ(αμ

−m)g)

is no longer positive semi-definite. For instance,

H(T 0
1 ,T 0

1 ) = H(α0
−11,α0

−11) = H(1,α0
1α

0
−11)

= H(1, [α0
1 ,α0

−1]1) = H(1,−1)

= −1.

Moreover, this representation does not respect the gauge conditions Ln = 0.
A solution of both problems is provided by the so-called “no-ghost theorem”
(cf. [GSW87]). It essentially states that taking into account the gauge conditions
Ln = 0, n > 0, the representation becomes unitary for the dimension D = 26. This
means that the restriction of the hermitian form to the space of “physical states”

P := { f ∈ S : Ln f = 0 for all n > 0,L0 f = f}

is positive semi-definite (D = 26). A proof of the no-ghost theorem using the Kac
determinant can be found in [Tho84].
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