
Fields Institute Communications
Volume 00, 0000

Hopf-Galois and Bi-Galois Extensions

Peter Schauenburg
Mathematisches Institut der Universität München

Theresienstr. 39

80333 München

Germany
email: schauen@mathematik.uni-muenchen.de

Contents

1. Introduction 1
2. Hopf-Galois theory 3
3. Hopf-bi-Galois theory 25
4. Appendix: Some tools 39
References 45

1 Introduction

Hopf-Galois extensions were introduced by Chase and Sweedler [8] (in the com-
mutative case) and Kreimer and Takeuchi [25] (in the case of finite dimensional Hopf
algebras) by axioms directly generalizing those of a Galois extension of rings, re-
placing the action of a group on the algebra by the coaction of a Hopf algebra H;
the special case of an ordinary Galois extension is recovered by specializing H to be
the dual of a group algebra. Hopf-Galois extensions also generalize strongly graded
algebras (here H is a group algebra) and certain inseparable field extensions (here
the Hopf algebra is the restricted envelope of a restricted Lie algebra, or, in more
general cases, generated by higher derivations). They comprise twisted group rings
R ∗ G of a group G acting on a ring R (possibly also twisted by a cocycle), and
similar constructions for actions of Lie algebras. If the Hopf algebra involved is
the coordinate ring of an affine group scheme, faithfully flat Hopf-Galois extensions
are precisely the coordinate rings of affine torsors or principal homogeneous spaces.
By analogy, Hopf-Galois extensions with Hopf algebra H the coordinate ring of
a quantum group can be considered as the noncommutative analog of a principal
homogeneous space, with a quantum group as its structure group. Apart from this
noncommutative-geometric interpretation, and apart from their role as a unifying
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language for many examples of good actions of things on rings, Hopf-Galois ex-
tensions are frequently used as a tool in the investigation of the structure of Hopf
algebras themselves.

In this paper we try to collect some of the basic facts of the theory of Hopf-
Galois extensions and (see below) bi-Galois extensions, offering alternative proofs
in some instances, and proving new facts in very few instances.

In the first part we treat Hopf-Galois extensions and discuss various properties
by which they can, to some extent, be characterized. After providing the necessary
definitions, we first treat the special case of cleft extensions, repeating (with some
more details) a rather short proof from [38] of their characterization, due to Blat-
tner, Cohen, Doi, Montgomery, and Takeuchi [15, 5, 6]. Cleft extensions are the
same as crossed products, which means that they have a combinatorial description
that specializes in the case of cocommutative Hopf algebras to a cohomological
description in terms of Sweedler cohomology [46].

In Section 2.3 we prove Schneider’s structure theorem for Hopf modules, which
characterizes faithfully flat Hopf-Galois extensions as those comodule algebras A
that give rise to an equivalence of the category of Hopf modules MH

A with the
category of modules of the ring of coinvariants under the coaction of H. The
structure theorem is one of the most ubiquitous applications of Hopf-Galois theory
in the theory of Hopf algebras. We emphasize the role of faithfully flat descent in
its proof.

A more difficult characterization of faithfully flat Hopf-Galois extensions, also
due to Schneider, is treated in Section 2.4. While the definition of an H-Galois
extension A of B asks for a certain canonical map β : A ⊗B A → A ⊗ H to be
bijective, it is sufficient to require it to be surjective, provided we work over a field
and A is an injective H-comodule. When we think of Hopf-Galois extensions as
principal homogeneous spaces with structure quantum group, this criterion has a
geometric meaning. We will give a new proof for it, which is more direct than
that in [44]. The new proof has two nice side-effects: First, it is more parallel to
the proof that surjectivity of the canonical map is sufficient for finite-dimensional
Hopf algebras (in fact so parallel that we prove the latter fact along with Schneider’s
result). Secondly, it yields without further work the fact that an H-Galois extension
A/B that is faithfully flat as a B-module is always projective as a B-module 1.

Section 2.5 treats (a generalized version of) a characterization of Hopf-Galois
extensions due to Ulbrich: An H-Galois extension of B is (up to certain additional
conditions) the same thing as a monoidal functor HM→ BMB from the monoidal
category of H-comodules to the category of B-bimodules.

In Section 2.6 we deal with another characterization of Hopf-Galois extensions
by monoidal functors: Given any H-comodule algebra A with coinvariants B, we
can define a monoidal category AMH

A of Hopf bimodules (monoidal with the tensor
product over A), and a weak monoidal functor from this to the category of B-
bimodules. Again up to some technical conditions, the functor is monoidal if and
only if A is an H-Galois extension of B.

In Section 2.8 we show how to characterize Hopf-Galois extensions without ever
mentioning a Hopf algebra. The axioms of a torsor we give here are a simplified

1Since the present paper was submitted, the new proof has been developed further in joint

work with H.-J. Schneider, in particular to also prove some results on Q-Galois extensions for a
quotient coalgebra and one sided module of H; this type of extensions will not be considered in

the present paper.
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variant of axioms recently introduced by Grunspan. A crucial ingredient in the
characterization is again the theory of faithfully flat descent.

The second part of the paper deals with bi-Galois objects. This means, first
of all, that we restrict our attention to Galois extensions of the base ring k rather
than of an arbitrary coinvariant subring. Contrary, as it were, to the theory of
torsors that can do without any Hopf algebras, the theory of bi-Galois extensions
exploits the fact that any Hopf-Galois object has two rather than only one Hopf
algebra in it. More precisely, for every H-Galois extension A of k there is a uniquely
determined second Hopf algebra L such that A is a left L-Galois extension of A
and an L-H-bicomodule. We will give an account of the theory and several ways
in which the new Hopf algebra L can be applied. Roughly speaking, this may
happen whenever there is a fact or a construction that depends on the condition
that the Hopf algebra H be cocommutative (which, in terms of bi-Galois theory,
means L ∼= H). If this part of the cocommutative theory does not survive if H
fails to be cocommutative, then maybe L can be used to replace H. Our approach
will stress a very general universal property of the Hopf algebra L in an L-H-
Galois extension. Several versions of this were already used in previous papers, but
the general version we present here appears to be new. The construction of L was
invented in the commutative case by Van Oystaeyen and Zhang to repair the failing
of the fundamental theorem of Galois theory for Hopf-Galois extensions. We will
discuss an application to the computation of Galois objects over tensor products,
and to the problem of reducing the Hopf algebra in a Hopf-Galois object to a
quotient Hopf algebra (here, however, L arises because of a lack of commutativity
rather than cocommutativity). Perhaps the most important application is that
bi-Galois extensions classify monoidal category equivalences between categories of
comodules over Hopf algebras.

Some conventions and background facts can be found in an appendix. Before
starting, however, let us point out a general notational oddity: Whenever we refer to
an element ξ ∈ V ⊗W of the tensor product of two modules, we will take the liberty
to “formally” write ξ = v⊗w, even if we know that the element in question is not a
simple tensor, or, worse, has to be chosen from a specific submodule that is not even
generated by simple tensors. Such formal notations are of course widely accepted
under the name Sweedler notation for the comultiplication ∆(c) = c(1)⊗c(2) ∈ C⊗C
in a coalgebra C, or δ(v) = v(0) ⊗ v(1) for a right comodule, or δ(v) = v(−1) ⊗ v(0)

for a left comodule.
For a coalgebra C and a subspace V ⊂ C we will write V + = V ∩ Ker(ε).

Ccop denotes the coalgebra C with coopposite comultiplication, Aop the algebra A
with opposite multiplication. Multiplication in an algebra A will be denoted by
∇ : A⊗A→ A.

2 Hopf-Galois theory

2.1 Definitions. Throughout this section, H is a k-bialgebra, flat over k. A
(right) H-comodule algebra A is by definition an algebra in the monoidal category
of right H-comodules, that is, a right H-comodule via δ : A 3 a 7→ a(0)⊗a(1) and an
algebra, whose multiplication ∇ : A⊗A→ A is a colinear map, as well as the unit
η : k → A. These conditions mean that the unit 1A ∈ A is a coinvariant element,
1(0) ⊗ 1(1) = 1 ⊗ 1, and that δ(xy) = x(0)y(0) ⊗ x(1)y(1) holds for all x, y ∈ A.
Equivalently, A is an algebra and an H-comodule in such a way that the comodule
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structure is an algebra homomorphism δ : A→ A⊗H. For any H-comodule M we
let M co H := {m ∈ M |δ(m) = m ⊗ 1} denote the subset of H-coinvariants. It is
straightforward to check that Aco H is a subalgebra of A.

Definition 2.1.1 The right H-comodule algebra A is said to be an H-Galois
extension of B := Aco H , if the Galois map

β : A ⊗
B
A 3 x⊗ y 7→ xy(0) ⊗ y(1) ∈ A⊗H

is a bijection. More precisely we should speak of a right H-Galois extension; it is
clear how a left H-Galois extension should be defined.

We will use the term “(right) Galois object” as shorthand for a right H-Galois
extension A of k which is a faithfully flat k-module.

The first example that comes to mind is the H-comodule algebra H itself:

Example 2.1.2 Let H be a bialgebra. Then H is an H-comodule algebra,
with Hco H = k. The Galois map β : H ⊗H → H ⊗H is the map T (id), where

T : Hom(H,H) → End−H
H−(H ⊗H)

is the anti-isomorphism from Lemma 4.4.1. Thus, H is a Hopf algebra if and only if
the identity on H is convolution invertible if and only if the Galois map is bijective
if and only if H is an H-Galois extension of k.

The notion of a Hopf-Galois extension serves to unify various types of exten-
sions. These are recovered as we specialize the Hopf algebra H to one of a number
of special types:

Example 2.1.3 Let A/k be a Galois field extension, with (finite) Galois group
G. Put H = kG, the dual of the group algebra. Then A is an H-Galois extension
of k. Bijectivity of the Galois map A ⊗ A → A ⊗ H is a consequence of the
independence of characters.

The definition of a Galois extension A/k of commutative rings in [9] requires (in
one of its many equivalent formulations) precisely the bijectivity of the Galois map
A⊗A→ A⊗kG, beyond of course the more obvious condition that k be the invariant
subring of A under the action of a finite subgroup G of the automorphism group of
A. Thus Hopf-Galois extensions of commutative rings are direct generalizations of
Galois extensions of commutative rings.

Example 2.1.4 Let A =
⊕

g∈GAg be a k-algebra graded by a group G. Then
A is naturally an H-comodule algebra for the group algebra kG, whose coinvariant
subring is B = Ae, the homogeneous component whose degree is the neutral ele-
ment. The Galois map A ⊗B A → A ⊗H is surjective if and only if AgAh = Agh

for all g, h ∈ G, that is, A is strongly graded [10, 52]. As we shall see in Corollary
2.4.9, this condition implies that A is an H-Galois extension of B if k is a field.

We have seen already that a bialgebra H is an H-Galois extension of k if and
only if it is a Hopf algebra. The following more general observation is the main
result of [34]; we give a much shorter proof that is due to Takeuchi [51].

Lemma 2.1.5 Let H be a k-flat bialgebra, and A a right H-Galois extension
of B := Aco H , which is faithfully flat as k-module. Then H is a Hopf algebra.
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Proof H is a Hopf algebra if and only if the map βH : H ⊗ H 3 g ⊗ h 7→
gh(1) ⊗ h(2) is a bijection. By assumption the map βA : A ⊗B A 3 x ⊗ y 7→
xy(0) ⊗ y(1) ∈ A⊗H is a bijection. Now the diagram

A ⊗B A ⊗B A
A⊗BβA //

βA⊗BA

��

A ⊗B A⊗H

βA⊗H

��

(A⊗H) ⊗B A

(βA)13

��
A⊗H ⊗H A⊗H ⊗H//

A⊗βH

commutes, where (βA)13 denotes the map that applies βA to the first and third
tensor factor, and leaves the middle factor untouched. Thus A⊗βH , and by faithful
flatness of A also βH , is a bijection.

The Lemma also shows that if A is an H-Galois extension and a flat k-module,
then Aop is never an Hop-Galois extension, unless the antipode of H is bijective.
On the other hand (see [44]):

Lemma 2.1.6 If the Hopf algebra H has bijective antipode and A is an H-
comodule algebra, then A is an H-Galois extension if and only if Aop is an Hop-
Galois extension.

Proof The canonical map Aop ⊗Bop Aop → Aop⊗Hop identifies with the map
β′ : A ⊗B A → A ⊗ H given by β′(x ⊗ y) = x(0)y ⊗ x(1). One checks that the
diagram

A ⊗B A
β //

β′ %%KKKKKKKKKK A⊗H

α

��
A⊗H

commutes, where α : A⊗H 3 a⊗h 7→ a(0)⊗a(1)S(h) is bijective with α−1(a⊗h) =
a(0) ⊗ S−1(h)a(1).

Lemma 2.1.7 Let A be an H-Galois extension of B. For h ∈ H we write
β−1(1⊗ h) =: h[1] ⊗ h[2]. For g, h ∈ H, b ∈ B and a ∈ A we have

h[1]h[2]
(0) ⊗ h[2]

(1) = 1⊗ h (2.1.1)

h[1] ⊗ h[2]
(0) ⊗ h[2]

(1) = h(1)
[1] ⊗ h(1)

[2] ⊗ h(2) (2.1.2)

h[1]
(0) ⊗ h[2] ⊗ h[1]

(1) = h(2)
[1] ⊗ h(2)

[2] ⊗ S(h(1)) (2.1.3)

h[1]h[2] = ε(h)1A (2.1.4)

(gh)[1] ⊗ (gh)[2] = h[1]g[1] ⊗ g[2]h[2] (2.1.5)

bh[1] ⊗ h[2] = h[1] ⊗ h[2]b (2.1.6)

a(0)a(1)
[1] ⊗ a(1)

[2] = 1⊗ a (2.1.7)

We will omit the proof, which can be found in [45, (3.4)].
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Definition 2.1.8 Let H be a Hopf algebra, and A an H-Galois extension of
B. The Miyashita-Ulbrich action of H on the centralizer AB of B in A is given by
x ↼ h = h[1]xh[2] for x ∈ AB and h ∈ H.

The expression h[1]xh[2] is well-defined because x ∈ AB , and it is in AB again
because h[1]⊗h[2] ∈ (A ⊗B A)B . The following properties of the Miyashita-Ulbrich
action can be found in [52, 16] in different language.

Lemma 2.1.9 The Miyashita-Ulbrich action makes AB an object of YDH
H , and

thus the weak center of the monoidal category MH of right H-comodules. AB is
the center of A in the sense of Definition 4.2.1.

Proof It is trivial to check that AB is an subcomodule of A. It is a Yetter-
Drinfeld module by (2.1.3) and (2.1.2). Now the inclusion AB ↪→ A is central in the
sense of Definition 4.2.1, since a(0)(x ↼ a(1)) = a(0)a(1)

[1]xa(1)
[2] = xa for all a ∈ A

and x ∈ AB by (2.1.7). Finally let us check the universal property in Definition
4.2.1: Let V be a Yetter-Drinfeld module, and f : V → A an H-colinear map with
a(0)f(v ↼ a(1)) = f(v)a for all v ∈ V and a ∈ A. Then we see immediately that f
takes values in AB . Moreover, we have f(v) ↼ h = h[1]f(v)h[2] = h[1]h[2]

(0)f(v ↼
h[2]

(1)) = f(v ↼ h) for all h ∈ H by (2.1.1).

Much of the “meaning” of the Miyashita-Ulbrich action can be guessed from the
simplest example A = H. Here we have h[1] ⊗ h[2] = S(h(1))⊗ h(2) ∈ H ⊗H, and
thus the Miyashita-Ulbrich action is simply the adjoint action of H on itself.

2.2 Cleft extensions and crossed products. Throughout the section, H
is a k-bialgebra.

Definition 2.2.1 Let B be a k-algebra. A map ⇀ : H⊗B → B is a measuring
if h ⇀ (bc) = (h(1) ⇀ b)(h(2) ⇀ c) and h ⇀ 1 = 1 hold for all h ∈ H and b, c ∈ B.

Let H be a bialgebra, and B an algebra. A crossed product B#σH is the
structure of an associative algebra with unit 1#1 on the k-module B#σH := B⊗H,
in which multiplication has the form

(b#g)(c#h) = b(g(1) ⇀ c)σ(g(2) ⊗ h(1))#g(3)h(2)

for some measuring ⇀ : H ⊗B → B and some linear map σ : H ⊗H → B.

We have quite deliberately stated the definition without imposing any explicit
conditions on σ. Such conditions are implicit, however, in the requirement that
multiplication be associative and have the obvious unit. We have chosen the defi-
nition above to emphasize that the explicit conditions on σ are never used in our
approach to the theory of crossed products. They are, however, known and not
particularly hard to derive:

Proposition 2.2.2 Let H be a bialgebra, ⇀ : H ⊗ B → B a measuring, and
σ : H ⊗H → B a k-linear map. The following are equivalent:

1. A = B#H := B ⊗H is an associative algebra with unit 1#1 and multipli-
cation

(b#g)(c#h) = b(g(1) ⇀ c)σ(g(2) ⊗ h(1))#g(3)h(2).

2. (a) ⇀ is a twisted action, that is (g(1) ⇀ (h(1) ⇀ b))σ(g(2) ⊗ h(2)) =
σ(g(1) ⊗ h(1))(g(2)h(2) ⇀ b) and 1 ⇀ b = b hold for all g, h ∈ H and
b ∈ B.
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(b) σ is a two-cocycle, that is (f (1) ⇀ σ(g(1) ⊗ h(1)))σ(f (2) ⊗ g(2)h(2)) =
σ(f (1) ⊗ g(1))σ(f (2) ⊗ g(2) ⊗ h) and σ(h⊗ 1) = σ(1⊗ h) = 1 hold for
all f, g, h ∈ H.

Not only are the conditions on σ known, but, more importantly, they have a
cohomological interpretation in the case where H is cocommutative and B is com-
mutative. In this case a twisted action is clearly simply a module algebra structure.
Sweedler [46] has defined cohomology groups H•(H,B) for a cocommutative bial-
gebra H and commutative H-module algebra B, and it turns out that a convolution
invertible map σ as above is precisely a two-cocycle in this cohomology. Sweedler’s
paper also contains the construction of a crossed product from a two-cocycle, and
the fact that his second cohomology group classifies cleft extensions (which we shall
define below) by assigning the crossed product to a cocycle. Group cohomology with
coefficients in the unit group of B as well as (under some additional conditions)
Lie algebra cohomology with coefficients in the additive group of B are examples
of Sweedler cohomology, and the cross product costruction also has precursors for
groups (twisted group rings with cocycles, which feature in the construction of ele-
ments of the Brauer group from group cocycles) and Lie algebras. Thus, the crossed
product construction from cocycles can be viewed as a nice machinery producing
(as we shall see shortly) Hopf-Galois extensions in the case of cocommutative Hopf
algebras and commutative coinvariant subrings. In the general case, the equations
do not seem to have any reasonable cohomological interpretation, so while cleft
extensions remain an important special class of Hopf-Galois extensions, it is rarely
possible to construct them by finding cocycles in some conceptually pleasing way.

We now proceed to prove the characterization of crossed products as special
types of comodule algebras, which is due to Blattner, Cohen, Doi, Montgomery,
and Takeuchi:

Definition 2.2.3 Let A be a right H-comodule algebra, and B := Aco H .

1. A is cleft if there exists a convolution invertible H-colinear map j : H → A
(also called a cleaving).

2. A normal basis for A is anH-colinear and B-linear isomorphism ψ : B⊗H →
A.

If j̃ is a cleaving, then j̃(1) is a unit in B, and thus j(h) = j̃(1)−1j̃(h) defines
another cleaving, which, moreover, satisfies j(1) = 1.

It was proved by Doi and Takeuchi [15] that A is H-Galois with a normal basis
if and only if it is cleft, and in this case A is a crossed product A ∼= B#σH with an
invertible cocycle σ : H ⊗H → B. Blattner and Montgomery [6] have shown that
crossed products with an invertible cocycle are cleft.

Clearly a crossed product is always an H-comodule algebra with an obvious
normal basis.

Lemma 2.2.4 Assume that the H-comodule algebra A has a normal basis
ψ : B ⊗H → A satisfying ψ(1⊗ 1) = 1. Then A is isomorphic (via ψ) to a crossed
product.

Proof In fact we may as well assume B ⊗ H = A as B-modules and H-
comodules. Define h ⇀ b = (B ⊗ ε)((1 ⊗ h)(b ⊗ 1)) and σ(g ⊗ h) = (B ⊗ ε)((1 ⊗



8 Peter Schauenburg

g)(1⊗ h)). Since multiplication is H-colinear, we find

(1⊗ g)(c⊗ 1) = (B ⊗ ε⊗H)(B ⊗∆)((1⊗ g)(c⊗ 1))

= (B ⊗ ε⊗H)((1⊗ g(1))(b⊗ 1)⊗ g(2)) = g(1) ⇀ b⊗ g(2),

(1⊗ g)(1⊗ h) = (B ⊗ ε⊗H)(B ⊗∆)((1⊗ g)(1⊗ h))

= (B ⊗ ε⊗H)((1⊗ g(1))(1⊗ h(1))⊗ g(2)h(2)) = σ(g(1) ⊗ h(1))⊗ g(2)h(2),

and finally

(b⊗ g)(c⊗ h) = (b⊗ 1)(1⊗ g)(c⊗ 1)(1⊗ h) = (b⊗ 1)(g(1) ⇀ c⊗ g(2))(1⊗ h)

= b(g(1) ⇀ c)σ(g(2) ⊗ h(1))⊗ g(3)h(2).

To prove the remaining parts of the characterization, we will make heavy use of
the isomorphisms TC

A from Lemma 4.4.1, for various choices of algebras A and
coalgebras C.

Lemma 2.2.5 Let j : H → A be a cleaving. Then there is a normal basis
ψ : B ⊗H → A with j = ψ(ηB ⊗H). If j(1) = 1, then ψ(1⊗ 1) = 1.

Proof We claim that ψ : B ⊗H 3 b⊗ h 7→ bj(h) ∈ A is a normal basis.
Since the comodule structure δ : A→ A⊗H is an algebra map, δj is convolution

invertible. Moreover δj = (j ⊗H)∆ by assumption. For a ∈ A, we have

TH
A⊗H(δj)(δ(a(0)j

−1(a(1)))⊗ a(2)) = TH
A⊗H(δj)TH

A⊗H(δj−1)(δ(a(0))⊗ a(1))

= a(0)j
−1(a(1))j(a(2))⊗ a(3) ⊗ a(4) = TH

A⊗H((j ⊗H)∆)(a(0)j
−1(a(1))⊗ 1⊗ a(2)),

hence δ(a(0)j
−1(a(1)))⊗ a(2) = a(0)j

−1(a(1))⊗ a(2), and further δ(a(0)j
−1(a(1))) =

a(0)j
−1(a(1)) ⊗ 1. Thus A 3 a 7→ a(0)j

−1(a(1)) ⊗ a(2) ∈ B ⊗H is well defined and
easily checked to be an inverse for ψ.

Lemma 2.2.6 Let A be an H-comodule algebra with a normal basis. Put
B := Aco H . The following are equivalent:

1. A is an H-Galois extension of B.
2. A is cleft.

Proof We can assume that A = B#σH is a crossed product, and that j(h) =
1⊗ h.

The map α : B ⊗H ⊗H → A ⊗B A with α(b ⊗ g ⊗ h) = b ⊗ g ⊗ 1 ⊗ h is an
isomorphism. For b ∈ B and g, h ∈ H we have

βAα(b⊗ g ⊗ h) = βA(b⊗ g ⊗ j(h)) = (b⊗ g)j(h(1))⊗ h(2) = TH
A (j)(b⊗ g ⊗ h),

that is βAα = TH
A (j). In particular, βA is an isomorphism if and only if TH

A (j) is,
if and only if j is convolution invertible.

In particular, if B is faithfully flat over k, then cleft extensions can only occur if H
is a Hopf algebra. If this is the case, we find:

Theorem 2.2.7 Let H be a Hopf algebra and A a right H-comodule algebra
with B := Aco H . The following are equivalent:

1. A is H-cleft.
2. A is H-Galois with a normal basis.
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3. A is isomorphic to a crossed product B#σH such that the cocycle σ : H ⊗
H → B is convolution invertible.

Proof We have already shown that under any of the three hypotheses we can
assume that A ∼= B#σH = B ⊗H is a crossed product, with j(h) = 1⊗ h, and we
have seen that (1) is equivalent to (2), even if H does not have an antipode.

Now, for b ∈ B, g, h ∈ H we calculate

TH
A (j)(b⊗ g ⊗ h) = bj(g)j(h(1))⊗ h(2) = bσ(g(1) ⊗ h(1))⊗ g(2)h(2) ⊗ h(3)

= (B ⊗ βH)(bσ(g(1) ⊗ h(1))⊗ g(2) ⊗ h(2)) = (B ⊗ βH)TH⊗H
B (σ)(b⊗ g ⊗ h)

that is, TH
A (j) = (B ⊗ βH)TH⊗H

B (σ). Since we assume that βH is a bijection, we
see that j is convolution invertible if and only if TH

A (j) is bijective, if and only if
TH⊗H

B (σ) is bijective, if and only if σ is convolution invertible.

The reader that has seen the proof of (3)⇒(1) in [6] may be worried that we
have lost some information: In [6] the convolution inverse of j is given explicitly,
while we only seem to have a rather roundabout existence proof. However, we see
from our arguments above that

j−1 = (TH
A )−1

(
TH⊗H

B (σ−1)(B ⊗ β−1
H )

)
,

that is,

j−1(h) = (A⊗ ε)TH⊗H
B (σ−1)(B ⊗ β−1

H )(1⊗ 1⊗ h)

= (A⊗ ε)TH⊗H
B (σ−1)(1⊗ S(h(1))⊗ h(2))

= (A⊗ ε)(σ−1(S(h(2))⊗ h(3))⊗ S(h(1))⊗ h(4))

= σ−1(S(h(2))⊗ h(3))#S(h(1)).

2.3 Descent and the structure of Hopf modules.

Definition 2.3.1 Let A be a right H-comodule algebra. A Hopf module M ∈
MH

A is a right A-module in the monoidal category of H-comodules. That is, M
is a right H-comodule and a right A-module such that the module structure is an
H-colinear map M⊗A→M . This in turn means that δ(ma) = m(0)a(0)⊗m(1)a(1)

holds for all m ∈M and a ∈ A.

For any comodule algebra, one obtains a pair of adjoint functors between the
category of Hopf modules and the category of modules over the coinvariant subal-
gebra.

Lemma 2.3.2 Let H be a k-flat Hopf algebra, A a right H-comodule algebra,
and B = Aco H . Then the functor

MH
A 3M 7→M co H ∈MB

is right adjoint to
MB 3 N 7→ N ⊗

B
A ∈ MH

A

Here, both the A-module and H-comodule structures of N ⊗B A are induced by
those of A. The unit and counit of the adjunction are

N 3 n 7→ n⊗ 1 ∈ (N ⊗
B
A)co H

M co H ⊗
B
A 3 m⊗ a 7→ ma ∈M
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If the adjunction in the Lemma is an equivalence, then we shall sometimes say
that the structure theorem for Hopf modules holds for the extension. A theorem of
Schneider [44] characterizes faithfully flat Hopf-Galois extensions as those comodule
algebras for which the adjunction above is an equivalence. The proof in [44] uses
faithfully flat descent; we rewrite it to make direct use of the formalism of faithfully
flat descent of modules that we recall in Section 4.5. This approach was perhaps
first noted in my thesis [32], though it is certainly no surprise; in fact, one of the
more prominent special cases of the structure theorem for Hopf modules over Hopf-
Galois extensions that is one direction of the characterization goes under the name
of Galois descent.

Example 2.3.3 Let A/k be a Galois field extension with Galois group G. A
comodule structure making an A-vector space into a Hopf module M ∈ MkG

A is the
same as an action of the Galois group G on M by semilinear automorphisms, i.e.
in such a way that σ · (am) = σ(a)(σ ·m) holds for all m ∈ M , a ∈ A and σ ∈ G.
Galois descent (see for example [23]) says, most of all, that such an action on M
forces M to be obtained from a k-vector space by extending scalars. This is (part
of) the content of the structure theorem for Hopf modules.

Remark 2.3.4 Let A be an H-comodule algebra; put B := Aco H . As a direct
generalization of the Galois map β : A ⊗B A→ A⊗H, we have a right A-module
map

βM : M ⊗
B
A 3 m⊗ a 7→ ma(0) ⊗ a(1) ∈M. ⊗H.

which is natural in M ∈ MA. Of course, the Galois map is recovered as β = βA.
Note that βM can be identified with M ⊗A βA, so that all βM are bijective once
βA is bijective.

Lemma 2.3.5 Let A be a right H-comodule algebra, and B := Aco H .
For each descent data (M, θ) ∈ D(A ↓ B), the map

δ :=
(
M

θ→M ⊗
B
A

βM−−→M ⊗H

)
is a right H-comodule structure on M making M ∈ MH

A .
Thus, we have defined a functor D(A ↓ B) →MH

A .
If A is an H-Galois extension of B, then the functor is an equivalence.

Proof Let θ : M → M ⊗B A be a right A-module map, and δ := βMθ. Of
course δ is a right A-module map, so that M is a Hopf module if and only if it is a
comodule.

Now we have the commutative diagrams

M
θ //

δ $$HH
HH

HH
HH

HH
M ⊗B A

θ⊗BA //

δ⊗BA

''PPPPPPPPPPPP

βM

��

M ⊗B A ⊗B A

βM⊗BA

��
M ⊗H

δ⊗H ((PPPPPPPPPPPP (M ⊗H) ⊗B A

βM⊗H

��
M ⊗H ⊗H
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using naturality of β with respect to the right A-module map δ, and

M
θ //

δ $$HH
HH

HH
HH

HH
M ⊗B A

η2 //

M⊗η⊗BA

''PPPPPPPPPPPP

βM

��

M ⊗B A ⊗B A

βM⊗BA

��
M ⊗H

M⊗∆ ((PPPPPPPPPPPP (M ⊗H) ⊗B A

βM⊗H

��
M ⊗H ⊗H

using βM⊗H(m⊗1⊗a) = (m⊗1)a(0)⊗a(1) = ma(0)⊗a(1)⊗a(2) = (M⊗∆)βM (m⊗a).
Moreover

M
θ //

δ $$IIIIIIIII M ⊗B A
µ //

βM

��

M

M ⊗H

M⊗ε

::uuuuuuuuu

also commutes. Thus, if θ is a descent data, then δ is a comodule.
Conversely, if β is bijective, then the natural transformation βM is an iso-

morphism. In particular the formula δ = βMθ defines a bijective correspondence
between A-module maps θ : M → M ⊗B A and δ : M → M. ⊗ H.. The same
diagrams as above show that δ is a comodule structure if and only if θ is a descent
data.

Schneider’s structure theorem for Hopf modules is now an immediate conse-
quence of faithfully flat descent:

Corollary 2.3.6 The following are equivalent for an H-comodule algebra A:
1. A is an H-Galois extension of B := Aco H , and faithfully flat as left B-

module.
2. The functor MB 3 N 7→ N ⊗B A ∈ MH

A is an equivalence.

Proof (1)⇒(2): We have established an equivalence D(A ↓ B) →MH
A , and it

is easy to check that the diagram

D(A ↓ B)

(—)θ
$$JJJJJJJJJ
∼ // MH

A

(—)co H

||yy
yy

yy
yy

MB

(2.3.1)

commutes. Thus the coinvariants functor is an equivalence by faithfully flat descent.
(2)⇒(1): Since (—)co H : MH

A → MB is an equivalence, and β : A ⊗B A
.
. →

A.⊗H.
. is a Hopf module homomorphism, β is an isomorphism if and only if βco H

is. But

A ∼= A ⊗
B
Aco H βco H

−−−→ A⊗Hco H ∼= A

is easily checked to be the identity. Thus, A is an H-Galois extension of B. It is
faithfully flat since (—) ⊗B A : MB →MH

A is an equivalence.

To shed some further light on the connection between descent data and the Galois
map, it may be interesting to prove a partial converse to Lemma 2.3.5:
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Proposition 2.3.7 Let H be a bialgebra, A a right H-comodule algebra, and
B = Aco H .

If the natural functor D(A ↓ B) →MH
A is an equivalence, then the Galois map

β : A ⊗B A→ A⊗H is surjective.
If, moreover, A is flat as left B-module, then A is an H-Galois extension of B.

Proof By assumption there is an A-module map θ = θM : M → M ⊗B A,
natural in M ∈ MH

A , such that the H-comodule structure of M is given by δM =
βMθM .

Specializing M = V
. ⊗ A

.

. for V ∈ MH , we obtain a natural A-module map
θ̃V : V ⊗ A → V ⊗ A ⊗B A, which, being an A-module map, is determined by
φV : V → V ⊗A ⊗B A. Finally, since φV is natural, it has the form

φV (v) = v(0) ⊗ v(1)
[1] ⊗ v(1)

[2]

for the map γ : H 3 h 7→ h[1] ⊗ h[2] ∈ A ⊗B A defined by γ = (ε ⊗ A ⊗B A)φH .
In particular we have θ̃V (v ⊗ a) = v(0) ⊗ v(1)

[1] ⊗ v(1)
[2]a, and hence, specializing

V = H and a = 1:

h(1) ⊗ 1⊗ h(2) = δH⊗A(h⊗ 1)

= βH⊗AθH⊗A(h⊗ 1)

= βH⊗A(h(1) ⊗ h(2)
[1] ⊗ h(2)

[2])

= h(1) ⊗ h(2)
[1]h(2)

[2]
(0) ⊗ h(2)

[2]
(1)

= h(1) ⊗ βA(h[1] ⊗ h[2])

for all h ∈ H, and thus β(ah[1] ⊗ h[2]) = a⊗ h for all a ∈ A.
If A is left B-flat, then θM (m) ∈Mθ ⊗B A ⊂M co H ⊗B A implies, in particu-

lar, that a(0) ⊗ a(1)
[1] ⊗ a(1)

[2] ∈ (A⊗A)co H ⊗B A, and thus a(0)a(1)
[1] ⊗ a(1)

[2] ∈
B ⊗ A. Hence β−1(a ⊗ h) = ah[1] ⊗ h[2] is actually (not only right) inverse to
β by the calculation β−1β(x ⊗ y) = β−1(xy(0) ⊗ y(1)) = xy(0)y(1)

[1] ⊗ y(1)
[2] =

x⊗ y(0)y(1)
[1]y(1)

[2] = x⊗ y.

2.4 Coflat Galois extensions. A faithfully flat H-Galois extension is easily
seen to be a faithfully coflat H-comodule:

Lemma 2.4.1 Let H be a k-flat Hopf algebra, and A an H-Galois extension of
B. If AB is faithfully flat and A is a faithfully flat k-module, then A is a faithfully
coflat H-comodule.

Proof If AB is flat, then we have an isomorphism, natural in V ∈ HM:

A ⊗
B

(A 2
H
V ) ∼= (A ⊗

B
A) 2

H
V ∼= (A⊗H) 2

H
V ∼= A⊗ V.

If AB is faithfully flat and A is faithfully flat over k, then it follows that the functor
A 2H — is exact and reflects exact sequences.

The converse is trivial if B = k, for then any (faithfully) coflat comodule is
a (faithfully) flat k-module by the definition we chose for coflatness. This is not
at all clear if B is arbitrary. However, it is true if k is a field. In this case much
more can be said. Schneider [44] has proved that a coflat H-comodule algebra A
is already a faithfully flat (on either side) Hopf-Galois extension if we only assume
that the Galois map is surjective, and the antipode of H is bijective. We will give
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a different proof of this characterization of faithfully flat Hopf-Galois extensions.
Like the original, it is based on Takeuchi’s result that coflatness and injectivity
coincide for comodules if k is a field, and on a result of Doi on injective comodule
algebras (for which, again, we will give a slightly different proof). Our proof of
Schneider’s criterion will have a nice byproduct: In the case that k is a field and
the Hopf algebra H has bijective antipode, every faithfully flat H-Galois extension
is a projective module (on either side) over its coinvariants.

Before going into any details, let us comment very briefly on the algebro-
geometric meaning of Hopf-Galois extensions and the criterion. If H is the (com-
mutative) Hopf algebra representing an affine group scheme G, A the algebra of an
affine scheme X on which H acts, and Y the affine scheme represented by Aco H ,
then A is a faithfully flat H-Galois extension of B if and only if the morphism
X → Y is faithfully flat, and the map X × G → X ×Y X given on elements by
(x, g) 7→ (x, xg) is an isomorphism of affine schemes. This means that X is an affine
scheme with an action of G and a projection to the invariant quotient Y which is
locally trivial in the faithfully flat topology (becomes trivial after a faithfully flat
extension of the base Y ). This is the algebro-geometric version of a principal fiber
bundle with structure group G, or a G-torsor [11]. If we merely require the canon-
ical map A ⊗ A → A ⊗ H to be surjective, this means that we require the map
X × G → X × X given by (x, g) 7→ (x, xg) to be a closed embedding, or that we
require the action of G on X to be free. Thus, the criterion we are dealing with
in this section says that under the coflatness condition on the comodule structure
freeness of the action is sufficient to have a principal fiber bundle. Note in par-
ticular that surjectivity of the canonical map is trivial in the case where H is a
quotient Hopf algebra of a Hopf algebra A (or G is a closed subgroup scheme of an
affine group scheme X), while coflatness in this case is a representation theoretic
condition (the induction functor is exact). See [44] for further literature.

For the rest of this section, we assume that k is a field.
We start by an easy and well-known observation regarding projectivity of mod-

ules over a Hopf algebra.

Lemma 2.4.2 Let H be a Hopf algebra and M,P ∈ HM with P projective.
Then .P ⊗ .M ∈ HM is projective. In particular, H is semisimple if and only if
the trivial H-module is projective.

Proof The second statement follows from the first, since every module is its
own tensor product with the trivial module. The diagonal module .H ⊗ .M is free
by the structure theorem for Hopf modules, or since

.H ⊗M 3 h⊗m 7→ h(1) ⊗ h(2)m ∈ .H ⊗ .M

is an isomorphism. Since any projective P is a direct summand of a direct sum of
copies of H, the general statement follows.

If H has bijective antipode, then in the situation of the Lemma also M ⊗ P is
projective.

For our proof, we will need the dual variant. To prepare, we observe:

Lemma 2.4.3 Let C be a coalgebra and M ∈MC . Then M is injective if and
only if it is a direct summand of V ⊗ C

. ∈ MC for some V ∈ Mk. In particular,
if M is injective, then so is every V ⊗M

. ∈MC for V ∈Mk.



14 Peter Schauenburg

Lemma 2.4.4 Let H be a Hopf algebra and M, I ∈MH with I injective. Then
M

. ⊗ I
. ∈MH is injective.

Proof Since I is a direct summand of some V ⊗H
., it is enough to treat the

case I = H. But then

M
. ⊗H

. 3 m⊗ h 7→ m(0) ⊗m(1)h ∈M ⊗H
.

is a colinear bijection, and M ⊗H
. is injective.

We come to a key property of comodule algebras that are injective comodules,
which is due to Doi [13]:

Proposition 2.4.5 Let H be a Hopf algebra and A an H-comodule algebra
that is an injective H-comodule. Then every Hopf module in MH

A is an injective
H-comodule. If H has bijective antipode, then also every Hopf module in AMH is
an injective H-module.

Proof Let M ∈ MH
A . Since the module structure µ : M. ⊗ A

. → M is H-
colinear, and splits as a colinear map via M 3 m 7→ m⊗ 1 ∈M ⊗A, the comodule
M is a direct summand of the diagonal comodule M ⊗ A. The latter is injective,
since A is. The statement on Hopf modules in AMH follows since Hop is a Hopf
algebra and we can identify AMH with MHop

Aop .

Lemma 2.4.6 The canonical map β0 : A⊗A→ A⊗H is a morphism of Hopf
modules in AMH if we equip its source and target with the obvious left A-module
structures, the source with the comodule structure coming from the left tensor factor,
and its target with the comodule structure given by (a⊗ h)(0) ⊗ (a⊗ h)(1) = a(0) ⊗
h(2) ⊗ a(1)S(h(1)). The latter can be viewed as a codiagonal comodule structure, if
we first endow H with the comodule structure restricted along the antipode. Thus
we may write briefly that

β0 : .A. ⊗A→ .A. ⊗HS

is a morphism in AMH .

Proposition 2.4.7 Let H be a Hopf algebra, and A a right H-comodule algebra;
put B := Aco H . Assume there is an H-comodule map γ : HS → A

. ⊗ A such
that β(γ(h)) = 1 ⊗ h for all h ∈ H (where we abuse notations and also consider
γ(h) ∈ A ⊗B A).

Then the counit M co H ⊗B A → M of the adjunction in Lemma 2.3.2 is an
isomorphism for every M ∈ MH

A . Its inverse lifts to a natural transformation
M →M co H ⊗A (with the tensor product over k).

In particular A is an H-Galois extension of B, and a projective left B-module.

Proof We shall write γ(h) =: h[1] ⊗ h[2]. This is to some extent an abuse of
notations, since the same symbol was used for the map H → A ⊗B A induced by
the inverse of the canonical map in a Hopf-Galois extension. However, the abuse
is not so bad, because in fact the map we use in the present proof will turn out
to induce that inverse. Our assumptions on γ read h(2)

[1] ⊗ h(2)
[2] ⊗ S(h(1)) =

h[1]
(0) ⊗ h[2] ⊗ h[1]

(1) and h[1]h[2]
(0) ⊗ h[2]

(1) = 1 ⊗ h ∈ A ⊗H for all h ∈ H. The
latter implies in particular that h[1]h[2] = ε(h)1A.
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It follows for all m ∈M ∈ MH
A that m(0)m(1)

[1] ⊗m(1)
[2] ∈M co H ⊗A; indeed

ρ(m(0)m(1)
[1])⊗m(1)

[2] = m(0)m(3)
[1] ⊗m(1)S(m(2))⊗m(3)

[2] = m(0)m(1)
[1] ⊗ 1⊗

m(1)
[2].
Now we can write down the natural transformation ψ : M 3 m 7→ m(0)m(1)

[1]⊗
m(1)

[2] ∈M co H ⊗A, and define ϑ : M →M co H ⊗B A as the composition of ψ with
the canonical surjection.

We claim that ϑ is inverse to the adjunction map φ : M co H ⊗B A→M .
Indeed

φϑ(m) = φ(m(0)m(1)
[1] ⊗m(1)

[2]) = m(0)m(1)
[1]m(1)

[2] = m

and

ϑφ(n⊗ a) = φ−1(na) = na(0)a(1)
[1] ⊗ a(1)

[2] = n⊗ a(0)a(1)
[1]a(1)

[2] = n⊗ a,

using that a(0)a(1)
[1] ⊗ a(1)

[2] ∈ B ⊗A.
Since the adjunction map is an isomorphism, A is an H-Galois extension of B.
The instance ψA : A 3 a 7→ a(0)a(1)

[1] ⊗ a(2)
[2] ∈ B ⊗A of ψ splits the multipli-

cation map B⊗A→ A, so that A is a direct summand of B⊗A as left B-module,
and hence a projective B-module.

Corollary 2.4.8 Let H be a Hopf algebra and A a right H-comodule algebra
such that that the canonical map β0 : A⊗A→ A⊗H is a surjection.

Assume in addition that β0 : A. ⊗ A→ A
. ⊗HS splits as a comodule map for

the indicated H-comodule structures. Then A is a right H-Galois extension of B
and a projective left B-module.

In particular, the assumption can be verified in the following cases:
1. H is finite dimensional.
2. A is injective as H-comodule, and H has bijective antipode.

Proof First, if β0 splits as indicated via a map α : A. ⊗ HS → A
. ⊗ A with

β0α = id , then the composition

γ =
(
H

η⊗H−−−→ A⊗H
α−→ A⊗A

)
satisfies the assumptions of Proposition 2.4.7.

If A is an injective comodule, and H has bijective antipode, then every Hopf
module in AMH is an injective comodule by Proposition 2.4.5. Thus the (kernel
of the) Hopf module morphism β0 splits as a comodule map. Finally, if H is finite
dimensional, then we take the view that β0 should split as a surjective H∗-module
map. But HS is projective as H∗-module, and hence A⊗HS is projective as well,
and thus the map splits.

As a corollary, we obtain Schneider’s characterization of faithfully flat Hopf-Galois
extensions from [44] (and in addition projectivity of such extensions).

Corollary 2.4.9 Let H be a Hopf algebra with bijective antipode over a base
field k, A a right H-comodule algebra, and B := Aco H . The following are equiva-
lent:

1. The Galois map A⊗A→ A⊗H is onto, and A is injective as H-comodule.
2. A is an H-Galois extension of B, and right faithfully flat as B-module.
3. A is an H-Galois extension of B, and left faithfully flat as B-module.

In this case, A is a projective left and right B-module.
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Proof We already know from the beginning of this section that 2⇒1. Assume
1. Then Corollary 2.4.8 implies that A is Galois and a projective left B-module, and
that the counit of the adjunction in Lemma 2.3.2 is an isomorphism. By Corollary
2.3.6 it remains to prove that the unit N → (N ⊗B A)co H is also a bijection for all
N ∈MB . But N ⊗B A is defined by a coequalizer

N ⊗B ⊗A ⇒ N ⊗A→ N ⊗
B
A→ 0,

which is a coequalizer in the category MH
A . Since every Hopf module is an injective

comodule, every short exact sequence in MH
A splits colinearly, so the coinvariants

functor MH
A →MB is exact, and applying it to the coequalizer above we obtain a

coequalizer

N ⊗B ⊗A ⇒ N ⊗B → (N ⊗
B
A)co H

which says that (N ⊗B A)co H ∼= N ⊗B B ∼= N .
The equivalence of 1 and 3 is proved by applying that of 1 and 2 to the Hop

comodule algebra Aop.

2.5 Galois extensions as monoidal functors. In this section we prove the
characterization of Hopf-Galois extensions as monoidal functors from the category
of comodules due to Ulbrich [53, 54]. We are somewhat more general in allowing
the invariant subring to be different from the base ring. In this general setting,
we have proved one direction of the characterization in [35], but the proof is really
no different from Ulbrich’s. Some details of the reverse direction (from functors
to extensions) are perhaps new. It will turn out that in fact suitably exact weak
monoidal functors on the category of comodules are the same as comodule algebras,
while being monoidal rather than only weak monoidal is related to the Galois
condition.

Proposition 2.5.1 Let H be a bialgebra, and A ∈MH coflat.
If A is an H-comodule algebra, then

ξ : (A 2
H
V )⊗ (A 2

H
W ) 3 (x⊗ v)⊗ (y ⊗ w) 7→ xy ⊗ v ⊗ w ∈ A 2

H
(V ⊗W )

and ξ0 : k 3 α 7→ 1 ⊗ α ∈ A 2H k define the structure of a weak monoidal functor
on A 2H — : HM→Mk.

Conversely, every weak monoidal functor structure on A 2H — has the above
form for a unique H-comodule algebra structure on A.

Proof The first claim is easy to check. For the second, given a monoidal
functor structure ξ, define multiplication on A as the composition

A⊗A ∼= (A 2
H
H)⊗ (A 2

H
H)

ξ−→ A 2
H

(H ⊗H) A2∇−−−→ A 2
H
H ∼= A.
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By naturality of ξ in its right argument, applied to ∆: H → .
H ⊗ H, we have a

commutative diagram

(A 2H H)⊗ (A 2H H)
ξ //

A2HH⊗A2H∆

��

A 2H (H ⊗H)

A2H(H⊗∆)

��
(A 2H H)⊗ (A 2H (H ⊗H))

��

A 2H (H ⊗H ⊗H)

��
(A 2H H)⊗ (A 2H H)⊗H

ξ⊗H // (A 2H (H ⊗H))⊗H

In other words, ξ : (A 2H H) ⊗ (A 2H H
.) → A 2H (H ⊗H

.) is an H-comodule
map with respect to the indicated structures. Similarly (though a little more com-
plicated to write), ξ : (A 2H H

.)⊗ (A 2H H) → A 2H (H. ⊗H) is also colinear,
and from both we deduce that ξ : (A 2H H

.)⊗ (A 2H H
.) → A 2H (H. ⊗H

.) is
colinear. Hence the muliplication on A is colinear. Associativity of multiplication
follows from coherence of ξ, so that A is a comodule algebra.

Corollary 2.5.2 Let H be a bialgebra, A a right H-comodule algebra, and
ι : B → Aco H a subalgebra.

Then for each V ∈ HM we have A 2H V ∈ BMB with bimodule structure
induced by that of A (induced in turn by ι). The weak monoidal functor structure in
Proposition 2.5.1 induces a weak monoidal functor structure on A 2H (—) : HM→
BMB, which we denote again by

ξ : (A 2
H
V ) ⊗

B
(A 2

H
W ) 3 x⊗ v ⊗ y ⊗ w 7→ xy ⊗ v ⊗ w ∈ A 2

H
(V ⊗W )

and ξ0 : B 3 b 7→ b ⊗ 1 ∈ A 2H k. If A is a (faithfully) coflat H-comodule, the
functor is (faithfully) exact

Every exact weak monoidal functor HM → BMB commuting with arbitrary
direct sums, for a k-algebra B, has this form.

Proof Again, it is not hard to verify that every comodule algebra A and
homomorphism ι gives rise to a weak monoidal functor as stated. For the con-
verse, note that a weak monoidal functor HM→ BMB can be composed with the
weak monoidal underlying functor BMB →Mk to yield a weak monoidal functor
HM → Mk. The latter is exact by assumption, so has the form V 7→ A 2H V
for some coflat H-comodule A by Lemma 4.3.3, and A is an H-comodule algebra
by Proposition 2.5.1. One ingredient of the weak monoidal functor structure that
we assume to exist is a B-B-bimodule map ξ0 : B → A 2H k with ξ0(1) = 1,
which has the form ξ0(b) = ι(b)⊗ 1 for some map ι : B → Aco H that also satisfies
ι(b) = 1. By coherence of the weak monoidal functor, the left B-module structure of
A 2H V , which is also one of the coherence isomorphisms of the monoidal category
of B-B-bimodules, is given by

B ⊗
B

(A 2
H
V )

ξ0⊗id−−−−→ (A 2
H
k) ⊗

B
(A 2

H
V )

ξ−→ A 2
H
V.

Thus b · (x ⊗ v) = ι(b)x ⊗ v holds for all b ∈ B and x ⊗ v ∈ A 2H V . If we
specialize V = H and use the isomorphism A 2H H, we see that ι is an algebra
homomorphism, and for general V we see that A 2H V has the claimed B-B-
bimodule structure.
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Theorem 2.5.3 Let H be a k-flat Hopf algebra, and B a k-algebra.
1. Every exact monoidal functor F : HM → BMB that commutes with arbi-

trary colimits has the form F(V ) = A 2H V for some right coflat H-Galois
extension A of B, with monoidal functor structure given as in Corollary
2.5.2.

2. Assume that A is a right faithfully flat H-Galois extension of B. Then the
weak monoidal functor A 2H — as in Corollary 2.5.2 is monoidal.

If we assume that k is a field, and H has bijective antipode, then a Hopf-Galois
extension is coflat as H-comodule if and only if it is faithfully flat as right (or left)
B-module. Also, if k is arbitrary, then a Hopf-Galois extension of k is faithfully
coflat as H-comodule if and only if it is faithfully flat as k-module. Thus wes have:

Corollary 2.5.4 Let H be a Hopf algebra and B a k-algebra. Assume either
of the following conditions:

1. k is a field and the antipode of H is bijective.
2. B = k.

Then Corollary 2.5.2 establishes a bijective correspondence between exact monoidal
functors HM→ BMB and faithfully flat H-Galois extensions of B.

Closing the section, let us give two curious application of the monoidal functor
associated to a Galois object.

If H is a Hopf algebra, then any V ∈ HM that is a finitely generated projective
k-module has a right dual object in the monoidal category HM. Monoidal functors
preserve duals. Thus, whenever A is a right faithfully flat H-Galois extension of
B, the B-bimodule A 2H V will have a right dual in the monoidal category of
B-bimodules. This in turn means that A 2H V is finitely generated projective as
a left B-module. We have proved:

Corollary 2.5.5 Let A be a right H-Galois extension of B and a right faithfully
flat B-module. Then for every V ∈ HM which is a finitely generated projective k-
module, the left B-module A 2H V is finitely generated projective. If H has bijective
antipode, the right B-module A 2H V is also finitely generated projective.

The corollary (which has other proofs as well) has a conceptual meaning when
we think of A as a principal fiber bundle with structure quantum group H. Then
A 2H V is analogous to the module of sections in an associated vector bundle
with fiber V , and it is of course good to know that such a module of sections is
projective, in keeping with the classical Serre-Swan theorem.

Definition 2.5.6 Let H be a k-flat Hopf algebra, and B a k-algebra. We
define GalB(H) to be the set of all isomorphism classes of H-Galois extensions of
B that are faithfully flat as right B-modules and (faithfully) flat as k-modules. We
write Gal(H) = GalB(H).

Proposition 2.5.7 GalB(—) is a contravariant functor. For a Hopf alge-
bra map f : F → H between k-flat Hopf algebras, the map GalB(f) : GalB(H) →
GalB(F ) maps the isomorphism class of A to that of A 2H F .

Proof In fact, f defines an exact monoidal functor FM→ HM, which com-
poses with the monoidal functor A 2H (—): HM → BMB defined by A to give
the functor (A 2H F ) 2F —, since A 2H V = A 2H (F 2F V ) ∼= (A 2H F ) 2F V
by k-flatness of A. This implies that A 2H F is a right F -Galois extension of B.
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It is faithfully flat on the right since A is, and for any left B-module M we have
A ⊗B (A 2H F ) ⊗B N ∼= ((A ⊗B A) 2H F ) ⊗B N ∼= (A ⊗ H 2H F ) ⊗B N ∼=
A ⊗B N ⊗H.

2.6 Hopf bimodules. Let A be anH-comodule algebra. Since A is an algebra
in the monoidal category ofH-comodules, we can consider the category of bimodules
over A in the monoidal category MH . Such a bimodule M ∈ AMH

A is an A-
bimodule fulfilling both Hopf module conditions for a Hopf module in MH

A and
AMH . By the general theory of modules over algebras in monoidal categories, the
category AMH

A is a monoidal category with respect to the tensor product over A.
Now without further conditions, taking coinvariants gives a weak monoidal functor:

Lemma 2.6.1 Let A be an H-comodule algebra, and let B ⊂ Aco H be a sub-
algebra. Then

AMH
A 3M 7→M co H ∈ BMB

is a weak monoidal functor with structure maps

ξ0 : M co H ⊗
B
N co H 3 m⊗ n 7→ m⊗ n ∈ (M ⊗

A
N)co H

and ξ0 : B → Aco H the inclusion.

The proof is straightforward. The main result of this section is that the functor
from the Lemma is monoidal rather than only weak monoidal if and only if A is an
H-Galois extension. The precise statement is slightly weaker:

Proposition 2.6.2 Let H be a Hopf algebra, A a right H-comodule algebra,
and B := Aco H .

If A is a left faithfully flat H-Galois extension of B, then the weak monoidal
functor from Lemma 2.6.1 is monoidal.

Conversely, if the weak monoidal functor from Lemma 2.6.1 is monoidal, then
the counit of the adjunction 2.3.2 is an isomorphism, and in particular, A is an
H-Galois extension of B.

Proof If A is a left faithfully flat H-Galois extension of B, then ξ is an iso-
morphism if and only if ξ ⊗B A is. But via the isomorphisms

M ⊗
A
N ∼= M co H ⊗

B
A ⊗

A
N ∼= M co H ⊗

B
N ∼= M co H ⊗

B
N co H ⊗

B
A

and (M ⊗A N)co H ⊗B A ∼= M ⊗A N , the map ξ ⊗B A : M co H ⊗B N co H ⊗B

A→ (M ⊗A N)co H ⊗B A identifies with the identity on M ⊗A N .
Conversely, if ξ is an isomorphism, we can specialize N := .A.⊗ .H.

. ∈ AMH
A .

We have N co H ∼= A. In AMH we have an isomorphism

.A. ⊗H
. ∼= .A⊗ .H.; a⊗ h 7→ a(0) ⊗ a(1)h.

Thus we have an isomorphism

M ⊗
A
N ∼= M ⊗

A
(.A. ⊗H

.) ∼= M
. ⊗H

.;m⊗ a⊗ h 7→ ma(0) ⊗ S(a(1))h.

composing with M.⊗H. 3 m⊗h 7→ m(0)⊗m(1)h ∈M⊗H. yields the isomorphism

M ⊗
A
N ∼= M ⊗H

.;m⊗ a⊗ h 7→ m(0)a⊗m(1)h.

Thus we find that

M co H ⊗
B
A ∼= M co H ⊗

B
N co H ξ−→ (M ⊗

A
N)co H ∼= (M ⊗H

.)co H ∼= M
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maps m⊗ a to ma, hence is the adjunction counit in question.

2.7 Reduction. We have already seen that GalB(—) is a functor. In partic-
ular, we have a map GalB(Q) → GalB(H) for any (suitable) quotient Hopf algebra
Q of H. In this section we will be concerned with the image and fibers of this map.
The question has a geometric interpretation when we think of Galois extensions as
principal fiber bundles: It is then the question under what circumstances a prin-
cipal bundle with structure group G can be reduced to a principal bundle whose
structure group is a prescribed subgroup of G.

The results in this section were proved first in [37] for the case of conormal quo-
tients Q (i.e. normal subgroups, when we think of principal homogeneous spaces).
The general case was obtained in [20, 21]. The proof we give here was essentially
given in [43]; we rewrite it here with (yet) more emphasis on its background in the
theory of algebras in monoidal categories. We begin with a Theorem of Takeuchi
[49] on Hopf modules for a quotient of a Hopf algebra. We prove a special case in
a new way here, which we do not claim to be particularly natural, but which only
uses category equivalences that we have already proved above.

Theorem 2.7.1 Let H be a k-flat Hopf algebra, and H → Q a quotient Hopf
algebra of H which is also k-flat and has bijective antipode. Assume that H is a
left Q-Galois extension of K := co QH, and faithfully flat as left as well as right
K-module.

Then MH
K 3 M 7→ M/MK+ ∈ MQ is a category equivalence. The inverse

equivalence maps N ∈MQ to N 2Q H with the K-module and H-comodule struc-
tures induced by those of H.

Remark 2.7.2 As we learned in Corollary 2.4.9, our list of requirements on
the quotient H → Q is fulfilled if k is a field, Q has bijective antipode, and H is a
coflat left Q-comodule.

Proof By the structure theorem for Hopf modules over a Hopf-Galois exten-
sion, we have an equivalence F : MK → QMH given by F(N) = N ⊗K H,
with quasi-inverse F(M) = co QM . We claim that F induces an equivalence
F̂ : MH

K → QMH
H . Indeed, if N ∈ MH

K , then N ⊗K H is an object of QMH
H

when endowed with the diagonal right H-module structure (which is well-defined
since K is an H-comodule subalgebra of H). Conversely, if M ∈ QMH

H , then
co QM is a right H-subcomodule of M and in this way a Hopf module in MH

K .
It is straightforward to check that the adjunction morphisms for F and F−1 are
compatible with these additional structures.

Next, we have the category equivalence MH
H
∼= Mk, which induces an equiv-

alence G : QM → QMH
H . Indeed, if V ∈ QM, then V ⊗ H ∈ QMH

H with the
codiagonal left Q-comodule structure, and conversely, if M ∈ QMH

H , then M co H is
a left Q-subcomodule of M . Now consider the composition

T :=
(
MQ → QM G−→ QMH

H
F̂−1

−−−→ MH
K

)
where the first functor is induced by the inverse of the antipode. We have T (V ) =
co Q(V S−1 ⊗H) = V 2Q H. We leave it to the reader to check that the module
and comodule structure of T (V ) are indeed those induced by H.

Since it is, finally, easy to check that the MH
K 3 M → M/MK+ ∈ MQ is left

adjoint to T , it is also its quasi-inverse.
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Let H and Q be k-flat Hopf algebras, and ν : H → Q a Hopf algebra map.
Then K := co QH is stable under the right adjoint action of H on itself defined
by x ↼ h = S(h(1))xh(2), since for x ∈ K we have ν((x ↼ h)(1)) ⊗ (x ↼
h)(2) = ν(S(h(2))x(1)h(3)) ⊗ S(h(1))x(2)h(4) = ν(S(h(2))h(3)) ⊗ S(h(1))xh(4) =
1 ⊗ S(h(1))xh(2) for all h ∈ H. Thus K is a subalgebra of the (commutative)
algebra H in the category YDH

H of right-right H-Yetter-Drinfeld modules, which in
turn is the center of the monoidal category MH of right H-comodules.

As a corollary, the category MH
K is equivalent to the monoidal subcategory

S ⊂ KMH
K of symmetric bimodules in MH , that is, the category of those M ∈

KMH
K for which xm = m(0)(x ↼ m(1)) holds for all m ∈ M and x ∈ K. The

equivalence is induced by the underlying functor KMH
K → MH

K . Since now the
source and target of the equivalence in Theorem 2.7.1 are monoidal functors, the
following Theorem answers an obvious question:

Theorem 2.7.3 The category equivalence from Theorem 2.7.1 is a monoidal
category equivalence with respect to the isomorphisms

ξ : (V 2
Q
H) ⊗

K
(W 2

Q
H) 3 v ⊗ g ⊗ w ⊗ h 7→ v ⊗ w ⊗ gh ∈ (V ⊗W ) 2

Q
H

Proof We have already seen (with switched sides) in Section 2.5 that ξ makes
(—) 2Q H : MQ → KMK a monoidal functor. Quite obviously, V 2Q H has the
structure of a right H-comodule in such a way that V 2Q H ∈ KMH

K , and ξ is an
H-comodule map. Thus, we have a monoidal functor (—) 2Q H : MQ → KMH

K .
For t = v⊗h ∈ V 2Q H we have xt = v⊗xh = v⊗h(1)(x ↼ h(2)) = t(0)(x ↼ t(1)),
so that the monoidal functor (—) 2Q H takes values in the subcategory S. Observe,
finally, that it composes with the underlying functor to MH

K to give the equivalence
of categories from Theorem 2.7.1. From the commutative triangle

MQ
(—)2QH //

(—)2QH ""EE
EE

EE
EE

S

U~~||
||

||
||

MH
K

of functors, in which we already know the slanted arrows to be equivalences, we
deduce that the top arrow is an equivalence.

Corollary 2.7.4 Assume the hypotheses of Theorem 2.7.1.
The categories of right Q-comodule algebras, and of algebras in the category

MH
K are equivalent. The latter consists of pairs (A, f) in which A is a right H-

comodule algebra, and f : K → A is a right H-comodule algebra map satisfyig
f(x)a = a(0)f(x ↼ a(1)) for all x ∈ K and a ∈ A.

Suppose given an algebra A ∈ MH
K , corresponding to an algebra A ∈ MQ.

Then the categories of right A-modules in MH
K and of right A-modules in MQ are

equivalent. The former is the category of right A-modules in MH
K , so we have a
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commutative diagram of functors

MQ

A

(—)2QH //

(—)co H

""DD
DD

DD
DD

MH
A

(—)co Q

||zz
zz

zz
zz

z

MB

where B = Aco H ∼= A
co Q

.

Corollary 2.7.5 Assume the hypotheses of Theorem 2.7.1. Then we have a
bijection between

1. isomorphism classes of left faithfully flat Q-Galois extensions of B, and
2. equivalences of pairs (A, f) in which A is a left faithfully flat H-Galois exten-

sion of B, and f : K → AB is a homomorphism of algebras in YDH
H . Here,

two pairs (A, f) and (A′, f ′) are equivalent if there is a B-linear H-comodule
algebra map t : A→ A′ such that tf = f ′.

Proof We know thatQ-comodule algebrasA correspond to isomorphism classes
of pairs (A, f) in which A is an H-comodule algebra and f : K → A an H-comodule
algebra map which is central in the sense of Definition 4.2.1. Since faithfully flat
Galois extensions are characterized by the structure theorem for Hopf modules,
see Corollary 2.3.6, the diagram in Corollary 2.7.4 shows that A is faithfully flat
Q-Galois if and only if A is faithfully flat H-Galois. But if A is faithfully flat
H-Galois, then every central H-comodule algebra map factors through a Yetter-
Drinfeld module algebra map to AB by Lemma 2.1.9.

The preceding corollary can be restated as follows:

Corollary 2.7.6 Assume the hypotheses of Theorem 2.7.1. Consider the map
π : GalB(Q) → GalB(H) given by π(A) = A 2Q H, and let A ∈ GalB(H). Then

π−1(A) ∼= Alg−H
−H(K,AB)/AutH

B (A),

where AutH
B (A) acts on Alg−H

−H(K,AB) by composition.

2.8 Hopf Galois extensions without Hopf algebras. Cyril Grunspan [19]
has revived an idea that appears to have been known in the case of commutative
Hopf-Galois extensions (or torsors) for a long time, going back to a paper of Rein-
hold Baer [1]: It is possible to write down axioms characterizing a Hopf-Galois
extension without mentioning a Hopf algebra.

This approach to (noncommutative) Hopf-Galois extensions begins in [19] with
the definition of a quantum torsor (an algebra with certain additional structures)
and the proof that every quantum torsor gives rise to two Hopf algebras over which
it is a bi-Galois extension of the base field. The converse was proved in [41]: Every
Hopf-Galois extension of the base field is a quantum torsor in the sense of Grunspan.
Then the axioms of a quantum torsor were simplified in [42] by showing that a
key ingredient of Grunspan’s definition (a certain endomorphism of the torsor) is
actually not needed to show that a torsor is a Galois object. The simplified version
of the torsor axioms admits a generalization to general Galois extensions (not only
of the base ring or field).
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Definition 2.8.1 Let B be a k-algebra, and B ⊂ T an algebra extension, with
T a faithfully flat k-module. The centralizer (T ⊗B T )B of B in the (obvious)
B-B-bimodule T ⊗B T is an algebra by (x⊗ y)(a⊗ b) = ax⊗ yb for x⊗ y, a⊗ b ∈
(T ⊗B T )B .

A B-torsor structure on T is an algebra map µ : T → T⊗(T ⊗B T )B ; we denote
by µ0 : T → T ⊗ T ⊗B T the induced map, and write µ0(x) = x(1) ⊗ x(2) ⊗ x(3).

The torsor structure is required to fulfill the following axioms:

x(1)x(2) ⊗ x(3) = 1⊗ x ∈ T ⊗
B
T (2.8.1)

x(1) ⊗ x(2)x(3) = x⊗ 1 ∈ T ⊗ T (2.8.2)

µ(b) = b⊗ 1⊗ 1 ∀b ∈ B (2.8.3)

µ(x(1))⊗ x(2) ⊗ x(3) = x(1) ⊗ x(2) ⊗ µ(x(3)) ∈ T ⊗ T ⊗
B
T ⊗ T ⊗

B
T (2.8.4)

Note that (2.8.4) makes sense since µ is a left B-module map by (2.8.3).

Remark 2.8.2 If B = k, then the torsor axioms simplify as follows: They
now assume the existence of an algebra map µ : T → T ⊗ T op ⊗ T such that the
diagrams

T
µ //

µ

��

T ⊗ T op ⊗ T

T⊗T op⊗µ

��
T ⊗ T op ⊗ T

µ⊗T op⊗T // T ⊗ T op ⊗ T ⊗ T op ⊗ T

T
T⊗η

uukkkkkkkkkkkkkkkk

µ

��

η⊗T

))SSSSSSSSSSSSSSSS

T ⊗ T T ⊗ T ⊗ T
T⊗∇

oo
∇⊗T

// T ⊗ T

commute.

The key observation is now that a torsor provides a descent data. Here we use
left descent data, i.e. certain S-linear maps θ : M → S ⊗R M for a ring extension
R ⊂ S and a left S-module M , as opposed to the right descent data in Section 4.5.
For a left descent data θ : M → S ⊗R M from S to R on a left S-module M we
will write θM := {m ∈M |θ(m) = 1⊗m}.

Lemma 2.8.3 Let T be a B-torsor. Then a descent data D from T to k on
T ⊗B T is given by D(x ⊗ y) = xy(1) ⊗ y(2) ⊗ y(3). It satisfies (T ⊗ D)µ(x) =
x(1) ⊗ 1⊗ x(2) ⊗ x(3).

Proof Left T -linearity of D is obvious. We have

(T ⊗D)µ(x) = x(1) ⊗D(x(2) ⊗ x(3))

= x(1) ⊗ (∇⊗ T ⊗ T )(x(2) ⊗ µ(x(3)))

= (T ⊗∇⊗ T ⊗ T )(µ(x(1))⊗ x(2) ⊗ x(3))

= x(1) ⊗ 1⊗ x(2) ⊗ x(3)
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and thus

(T ⊗D)D(x⊗ y) = xy(1) ⊗D(y(2) ⊗ y(3))

= xy(1) ⊗ 1⊗ y(2) ⊗ y(3)

= (T ⊗ η ⊗ T ⊗ T )D(x⊗ y).

Finally (∇⊗ T ⊗ T )D(x⊗ y) = xy(1)y(2) ⊗ y(3) = x⊗ y.

Note that D(T ⊗B T ) ⊂ T ⊗ (T ⊗B T )B . Since T is faithfully flat over k, then
faithfully flat descent implies that D(T ⊗B T ) ⊂ (T ⊗B T )B .

Theorem 2.8.4 Let T be a B-torsor, and assume that T is a faithfully flat
right B-module.

Then H := D(T ⊗B T ) is a k-flat Hopf algebra. The algebra structure is that
of a subalgebra of (T ⊗B T )B, the comultiplication and counit are given by

∆(x⊗ y) = x⊗ y(1) ⊗ y(2) ⊗ y(3),

ε(x⊗ y) = xy

for x ⊗ y ∈ H. The algebra T is an H-Galois extension of B under the coaction
δ : T → T ⊗H given by δ(x) = µ(x).

Proof H is a subalgebra of (T ⊗B T )B since for x⊗ y, a⊗ b ∈ H we have

D((x⊗ y)(a⊗ b)) = D(ax⊗ yb)

= ax(yb)(1) ⊗ (yb)(2) ⊗ (yb)(3)

= axy(1)b(1) ⊗ b(2)y(2) ⊗ y(3)b(3)

= ab(1) ⊗ b(2)x⊗ yb(3)

= 1⊗ ax⊗ yb

= 1⊗ (x⊗ y)(a⊗ b).

To see that the coaction δ is well-defined, we have to check that the image of µ is
contained in T ⊗H, which is, by faithful flatness of T , the equalizer of

T ⊗ T ⊗B T
T⊗D //

T⊗η⊗T⊗BT
// T ⊗ T ⊗ T ⊗B T .

But (T ⊗D)µ(x) = (T ⊗η⊗T ⊗B T )µ(x) was shown in Lemma 2.8.3. Since µ is an
algebra map, so is the coaction δ, for which we employ the usual Sweedler notation
δ(x) = x(0)⊗x(1). Note that (2.8.3) implies that δ(b) = b⊗1 for all b ∈ B; in other
words, δ is left B-linear.

The Galois map β : T ⊗B T → T ⊗H for the coaction δ is given by β(x⊗ y) =
xy(0)⊗y(1) = xy(1)⊗y(2)⊗y(3) = D(x⊗y). Thus it is an isomorphism by faithfully
flat descent, Theorem 4.5.2. It follows that H is faithfully flat over k.

Since δ is left B-linear,

∆0 : T ⊗
B
T 3 x⊗ y 7→ x⊗ y(1) ⊗ y(2) ⊗ y(3) ∈ T ⊗

B
T ⊗H

is well-defined. To prove that ∆ is well-defined, we need to check that ∆0(H) is
contained in H ⊗H, which, by faithful flatness of H, is the equalizer of

T ⊗B T ⊗H
D⊗H //

η⊗T⊗T⊗H
// T ⊗ T ⊗B T ⊗H .
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Now for x⊗ y ∈ H we have

(D ⊗H)∆0(x⊗ y) = (D ⊗H)(x⊗ y(1) ⊗ y(2) ⊗ y(3))

= xy(1)(1) ⊗ y(1)(2) ⊗ y(1)(3) ⊗ y(2) ⊗ y(3)

= xy(1) ⊗ y(2) ⊗ µ(y(3))

= (T ⊗ T ⊗ µ)D(x⊗ y)

= (T ⊗ T ⊗ µ)(1⊗ x⊗ y)

= 1⊗∆0(x⊗ y)

∆ is an algebra map since µ is, and coassociativity follows from the coassociativity
axiom of the torsor T .

For x ⊗ y ∈ H we have xy ⊗ 1 = xy(1) ⊗ y(2)y(3) = 1 ⊗ xy, whence xy ∈ k by
faithful flatness of T . Thus, ε is well-defined. It is straightforward to check that
ε is an algebra map, that it is a counit for ∆, and that the coaction δ is counital.
Thus, H is a bialgebra.

We may now write the condition δ(b) = b ⊗ 1 for b ∈ B simply as B ⊂ T co H .
Conversely, x ∈ T co H implies x⊗ 1 = x(1)x(2) ⊗ x(3) = 1⊗ x ∈ T ⊗B T , and thus
x ∈ B by faithful flatness of T as a B-module. Since we have already seen that the
Galois map for the H-extension B ⊂ T is bijective, T is an H-Galois extension of
B, and from Lemma 2.1.5 we deduce that H is a Hopf algebra.

Lemma 2.8.5 Let H be a k-faithfully flat Hopf algebra, and let T be a right
faithfully flat H-Galois extension of B ⊂ T . Then T is a B-torsor with torsor
structure

µ : T 3 x 7→ x(0) ⊗ x(1)
[1] ⊗ x(1)

[2] ∈ T ⊗ (T ⊗
B
T )B ,

where h[1] ⊗ h[2] = β−1(1 ⊗ h) ∈ T ⊗B T , with β : T ⊗B T → T ⊗ H the Galois
map.

3 Hopf-bi-Galois theory

3.1 The left Hopf algebra. Let A be a faithfully flat H-Galois object. Then
A is a torsor by Lemma 2.8.5 By the left-right switched version of Theorem 2.8.4,
there exists a Hopf algebra L := L(A,H) such that A is a left L-Galois extension
of k. Moreover, since the torsor structure µ : A→ A⊗Aop ⊗A is right H-colinear,
we see that A is an L-H-bicomodule.

Definition 3.1.1 An L-H-Bi-Galois object is a k-faithfully flat L-H-bicomodule
algebra A which is simultaneously a left L-Galois object and a right H-Galois ob-
ject.

We have seen that every right H-Galois object can be endowed with a left
L-comodule algebra structure making it an L-H-Bi-Galois object. We shall prove
uniqueness by providing a universal property shared by every L that makes a given
H-Galois object into an L-H-bi-Galois object.

Proposition 3.1.2 Let H and L be k-flat Hopf algebras, and A an L-H-bi-
Galois object.

Then for all n ∈ N and k-modules V,W we have a bijection

Φ := ΦV,W,n : Hom(V ⊗ L⊗n,W ) ∼= Hom−H(V ⊗A⊗n,W ⊗A)
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(where A⊗n carries the codiagonal comodule structure), given by Φ(f)(v⊗x1⊗ . . .⊗
xn) = f(v ⊗ x1(−1) ⊗ . . .⊗ xn(−1))⊗ x1(0) · · · · · xn(0).

In particular, for every k-module we have the universal property that every right
H-colinear map φ : A → W ⊗ A factors uniquely in the form φ = (f ⊗ A)δ` as in
the diagram

A
δ` //

φ ##FF
FF

FF
FF

F L⊗A

f⊗A

��

L

f

��
W ⊗A W

Proof Note first that the left Galois map β` : A. ⊗ A
.
. → L ⊗ A

.

. is evidently
a map of Hopf modules in MH

A with the indicated structures. We deduce that for
any M ∈MH we have

M
. ⊗ L⊗m ⊗A

.

. ∼= M
. ⊗ L⊗(m−1) ⊗A

. ⊗A
.
. ∼= M

. ⊗A
. ⊗ L⊗(m−1) ⊗A

.

.

in MH
A , and hence by induction

V ⊗ L⊗n ⊗A
.
. ∼= V ⊗ (A.)⊗n ⊗A

.

. ∈ MH
A

We can now use the structure theorem for Hopf modules, Corollary 2.3.6, to com-
pute

Hom(V ⊗ L⊗n,W ) ∼= Hom−H
−A (V ⊗ L⊗n ⊗A

.

.,W ⊗A
.
.)

∼= Hom−H
−A (V ⊗ (A.)⊗n ⊗A

.

.,W ⊗A
.
.) ∼= Hom−H(V ⊗A⊗n,W ⊗A).

We leave it to the reader to verify that the bijection has the claimed form.

Corollary 3.1.3 Let A be an L-H-bi-Galois object, B a k-module, f : L→ B,
and λ = Φ(f) : A→ B ⊗A.

1. Assume B is a coalgebra. Then f is a coalgebra map if and only if λ is a
comodule structure.

2. Assume B is an algebra. Then f is an algebra map if and only if λ is.
3. In particular, assume B is a bialgebra. Then f is a bialgebra map if and

only if λ is a comodule algebra structure. In particular, the bialgebra L in
an L-H-bi-Galois object is uniquely determined by the H-Galois object A.

Proof We have ∆f = (f ⊗ f)∆: L → B ⊗ B if and only if Φ(∆f) = Φ((f ⊗
f)∆): A → B ⊗ B ⊗ A. But Φ(∆f)(a) = (∆ ⊗ A)λ, and Φ((f ⊗ f)∆)(a) =
(f⊗f)∆(a(−1))⊗a(0) = f(a(−2))⊗f(a(−1))⊗a(0) = f(a(−1))⊗λ(a(0)) = (B⊗λ)λ(a),
proving (1).

We have ∇(f ⊗f) = f∇ : L⊗L→ B if and only if Φ(∇(f ⊗f)) = Φ(f∇) : A⊗
A→ B⊗A. But Φ(∇(f ⊗ f))(x⊗ y) = f(x(−1))f(y(−1))⊗x(0)y(0) = λ(x)λ(y) and
Φ(f∇)(x⊗ y) = f(x(−1)y(−1))⊗ x(0)y(0) = λ(xy), proving (2).

(3) is simply a combination of (1) and (2), since L as a bialgebra is uniquely
determined once it fulfills a universal property for bialgebra maps.

Corollary 3.1.4 Let A be an L-H-bi-Galois object. Then

Alg(L, k) 3 ϕ 7→ (a 7→ ϕ(a(−1))a(0)) ∈ Aut−H(A)

is an isomorphism from the group of algebra maps from L to k (i.e. the group of
grouplikes of L∗ if L is finitely generated projective) to the group of H-colinear
algebra automorphisms of A.
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IfH is cocommutative, then everyH-Galois object is trivially anH-H-bi-Galois
object, so:

Corollary 3.1.5 If H is cocommutative and A is an L-H-bi-Galois object,
then L ∼= H.

It is also obvious that L(H,H) = H. There is a more general important case
in which L(A,H) can be computed in some sense (see below, though), namely that
of cleft extensions:

Proposition 3.1.6 Let A = k#σH be a crossed product with invertible cocycle
σ. Then L(A,H) = H as coalgebras, while multiplication in L(A,H) is given by

g · h = σ(g(1) ⊗ h(1))g(2)h(2)σ
−1(g(3) ⊗ h(3)).

We will say that L(A,H) := Hσ is a cocycle double twist of H. The con-
struction of a cocycle double twist is dual to the construction of a Drinfeld twist
[17], and was considered by Doi [14]. We have said already that the isomorphism
L(k#σH,H) = Hσ computes the left Hopf algebra in case of cleft extensions in
some sense. In applications, this may rather be read backwards: Cocycles in the
non-cocommutative case are not easy to compute for lack of a cohomological inter-
pretation, while it may be easier to guess a left Hopf algebra from generators and
relations of A. In this sense the isomorphism may be used to compute the Hopf
algebra Hσ helped by the left Hopf algebra construction. This is quite important
in the applications we will cite in Section 3.2.

We will give a different proof from that in [33] of Proposition 3.1.6. It has the
advantage not to use the fact that Hσ is a Hopf algebra — checking the existence
of an antipode is in fact one of the more unpleasant parts of the construction.

Proof of Proposition 3.1.6 We will not check here that Hσ is a bialgebra.
Identify A = k#σH = H, with multiplication g ◦h = σ(g(1)⊗h(1))g(2)h(2). Then it
is straightforward to verify that comultiplication in H is an Hσ-comodule algebra
structrure A → Hσ ⊗ A which, of course, makes A an Hσ-H-bicomodule algebra.
One may now finish the proof by appealing to Lemma 3.2.5 below, but we will stay
more elementary. We shall verify that Hσ fulfills the universal property of L(A,H).
Of course it does so as a coalgebra, since the left coaction is just the comultiplication
ofH. Thus a B-H-bicomodule algebra structure λ : A→ B⊗A gives rise to a unique
coalgebra map f : Hσ → B by f(h) = (B⊗ε)λ(h) = h(−1)ε(h(0)). We have to check
that f is an algebra map:

f(g ·h) = σ(g(1)⊗h(1))f(g(2)h(2))σ−1(g(3)⊗h(3)) = f(g(1) ◦h(1))σ−1(g(2)⊗h(2))

= (B ⊗ ε)(λ(g(1))λ(h(1)))σ−1(g(2) ⊗ h(2))

= g(1)(−1)h(1)(−1)ε(g(1)(0) ◦ h(1)(0))σ−1(g(2) ⊗ h(2))

= g(−1)h(−1)ε(g(0)(1) ◦ g(0)(1))σ−1(g(0)(2) ⊗ h(0)(2)) = g(−1)h(−1)ε(g(0) · h(0))

= g(−1)ε(g(0))h(−1)ε(h(0)) = f(g)f(h)

Remark 3.1.7 Let A be an L-H-bi-Galois object. The left Galois map
β` : A. ⊗ A

. → L ⊗ A
. is right H-colinear as indicated, and thus induces an iso-

morphism (A⊗A)co H ∼= (L⊗A)co H ∼= L, where the coinvariants of A ⊗ A are
taken with respect to the codiagonal comodule structure. Let us check that the
isomorphism is an algebra map to a subalgebra of A⊗Aop: If x⊗y, x′⊗y′ ∈ A⊗A
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are such that x(−1) ⊗ x(0)y = ` ⊗ 1 and x′(−1) ⊗ x′(0)y = `′ ⊗ 1 for `, `′ ∈ L, then
β`(xx′ ⊗ y′y) = x(−1)x

′
(−1) ⊗ x(0)x

′
(0)y

′y = x(−1)`
′ ⊗ x(0)y = ``′ ⊗ 1.

3.2 Monoidal equivalences and the groupoid of bi-Galois objects.
Let H be a Hopf algebra, and A an L-H-bi-Galois object. Then the monoidal
functor (A 2H —, ξ) considered in Section 2.5 also defines a monoidal functor
A 2H —: HM→ LM. If B is an H-R-bi-Galois object, then A 2H B is an L-H-
bicomodule algebra, and since the functor RM 3 V 7→ (A 2H B) 2R V ∈ LM is
the composition of the two monoidal functors (B 2R —) and A 2H —, it is itself
monoidal, so that A 2H B is an R-Galois object by Corollary 2.5.4. By symmetric
arguments, A 2H B is also a left L-Galois and hence an L-R-bi-Galois object.
Thus, without further work, we obtain:

Corollary 3.2.1 k-flat Hopf algebras form a category BiGal when we define a
morphism from a Hopf algebra H to a Hopf algebra L to be an isomorphism class
of L-H-bi-Galois objects, and if we define the composition of bi-Galois objects as
their cotensor product.

On the other hand we can define a category whose objects are Hopf algebras,
and in which a morphism from H to L is an isomorphism class of monoidal functors
HM→ LM.

A functor from the former category to the latter is described by assigning to an
L-H-bi-Galois object A the functor A 2H — : HM→ LM.

The purpose of the Corollary was to collect what we can deduce without further
effort from our preceding results. The following Theorem gives the full information:

Theorem 3.2.2 1. The category BiGal is a groupoid; that is, for every
L-H-bi-Galois object A there is an H-L-bi-Galois object A−1 such that
A 2H A−1 ∼= L as L-L-bicomodule algebras and A−1 2L A ∼= H as H-
H-bicomodule algebras.

2. The category BiGal is equivalent to the category whose objects are all k-flat
Hopf algebras, and in which a morphism from H to L is an isomorphism
class of monoidal category equivalences HM→ LM.

If k is a field, there is a short conceptual proof for the Theorem, in which the
second claim is proved first, and the first is an obvious consequence. If k is arbitrary,
there does not seem to be a way around proving the first claim first. This turns
out to be much easier if we assume all antipodes to be bijective. We will sketch all
approaches below, but we shall comment first on the main application of the result.

Definition 3.2.3 Let H, L be two k-flat Hopf algebras. We call H and L
monoidally Morita-Takeuchi equivalent if there is a k-linear monoidal equivalence
HM→ LM.

Since the monoidal category structure of the comodule category of a Hopf al-
gebra is one of its main features, it should be clear that monoidal Morita-Takeuchi
equivalence is an interesting notion of equivalence between two Hopf algebras,
weaker than isomorphy. Theorem 3.2.2 immediately implies:

Corollary 3.2.4 For two k-flat Hopf algebras H and L, the following are
equivalent:

1. H and L are monoidally Morita-Takeuchi equivalent.
2. There exists an L-H-bi-Galois object.
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3. There is a k-linear monoidal category equivalence MH →ML.

As a consequence of Corollary 3.2.4 and Proposition 3.1.6, Hopf algebras are
monoidally Morita-Takeuchi equivalent if they are cocycle double twists of each
other (one should note, though, that it is quite easy to give a direct proof of this
fact). Conversely, if H is a finite Hopf algebra over a field k, then every H-Galois
object is cleft. Thus every Hopf algebra L which is monoidally Morita-Takeuchi
equivalent to H is a cocycle double twist of H.

In many examples constructing bi-Galois objects has proved to be a very prac-
ticable way of constructing monoidal equivalences between comodule categories.
This is true also in the finite dimensional case over a field. The reason seems to
be that it is much easier to construct an associative algebra with nice properties,
than to construct a Hopf cocycle (or, worse perhaps, a monoidal category equiva-
lence). I will only very briefly give references for such applications: Nice examples
involving the representation categories of finite groups were computed by Masuoka
[27]. In [28] Masuoka proves that certain infinite families of non-isomorphic pointed
Hopf algebras collapse under monoidal Morita-Takeuchi equivalence. That paper
also contains a beautiful general mechanism for constructing Hopf bi-Galois objects
for quotient Hopf algebras of a certain type. This was applied further, and more
examples of families collapsing under monoidal Morita-Takeuchi equivalence were
given, in Daniel Didt’s thesis [12]. Bichon [4] gives a class of infinite-dimensional
examples that also involve non-cleft extensions.

Now we return to the proof of Theorem 3.2.2. First we state and prove (at least
sketchily) the part that is independent of k and any assumptions on the antipode.

Lemma 3.2.5 Let L and H be k-flat Hopf algebras. Then every k-linear
equivalence F : HM→ LM has the form F(V ) = A 2H V for some L-H-bi-Galois
object A.

More precisely, every exact k-linear functor F : HM → LM commuting with
arbitrary colimits has the form F(V ) = A 2H V for an L-H-bicomodule algebra
that is an H-Galois object, and if F is an equivalence, then A is an L-Galois object.

Proof Let B be a k-flat bialgebra, and F : HM → LM an exact functor
commuting with colimits. We already know that the composition F0 : HM→Mk

of F with the underlying functor has the form F0(V ) = A 2H V for an H-Galois
object A. It is straightforward to check that F has the form F(V ) = A 2H V for a
suitable L-comodule algebra structure on A making it an L-H-bicomodule algebra
(just take the left L-comodule structure of A = A 2H H = F0(A), and do a few
easy calculations). Conversely, every B-H-bicomodule algebra structure on A for
some flat bialgebra B lifts F0 to a monoidal functor G : HM → BM. If F is an
equivalence, we can fill in the dashed arrow in the diagram

HM
F //

G ##FFFFFFFF
LM

U

""EE
EE

EE
EE

���
�
�

BM
U // Mk

by a monoidal functor. To see this, simply note that every L-module is by assump-
tion naturally isomorphic to one of the form A 2H V with V ∈ HM, and thus it
is also a B-module. Now a monoidal functor LM→ BM that commutes with the
underlying functors has the form fM for a unique bialgebra map f : L → B. We
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have shown that L has the universal property characterizing the left Hopf algebra
L(A,H).

Now what is left of the proof of Theorem 3.2.2 is to provide a converse to
Lemma 3.2.5.

In the case that k is a field, we can argue by the general principles of reconstruc-
tion theory for quantum groups, which also go back to work of Ulbrich [55]; see e.g.
[31]. Assume given an H-Galois object A. The restriction A 2H —: HMf →Mk

of the functor A 2H — to the category of finite-dimensional H-comodules takes
values in finite dimensional vector spaces (see Corollary 2.5.5). Thus there exists a
Hopf algebra L such that the functor factors over an equivalence HMf → LMf ; by
the finiteness theorem for comodules this also yields an equivalence HM → LM.
By Lemma 3.2.5 we see that this equivalence comes from an L-H-bi-Galois struc-
ture on A, and in particular that cotensoring with a bi-Galois extension A is an
equivalence HM→ L(A,H)M.

The general technique of reconstruction behind this proof is to find a Hopf
algebra from a monoidal functor ω : C →Mk by means of a coendomorphism coal-
gebra construction. More generally, one can construct a cohomomorphism object
cohom(ω, ν) for every pair of functors ω, ν : C → Mk taking values in finite di-
mensional vector spaces. Ulbrich in fact reconstructs a Hopf-Galois object from
a monoidal functor HMf → Mk by applying this construction to the monoidal
functor in question on one hand, and the underlying functor on the other hand. It
is clear that the left Hopf algebra of a Hopf-Galois object A can be characterized
as the universal Hopf algebra reconstructed as a coendomorphism object from the
functor A 2H —. Bichon [3] has taken this further by reconstructing a bi-Galois
object, complete with both its Hopf algebras, from a pair of monoidal functors
ω, ν : C → Mk taking values in finite dimensional vector spaces. He also gives an
axiom system (called a Hopf-Galois system, and extended slightly to be symmetric
by Grunspan [19]) characterizing the complete set of data arising in a Bi-Galois
situation: An algebra coacted upon by two bialgebras, and in addition another
bicomodule algebra playing the role of the inverse bi-Galois extension.

In the case where k is not a field, reconstruction techniques as the ones used
above are simply not available, and we have to take a somewhat different approach.
If we can show that BiGal is a groupoid, then the rest of Theorem 3.2.2 follows: The
inverse of the functor A 2H —HM→ LM can be constructed as A−1 2L : LM→
HM when A−1 is the inverse of A in the groupoid BiGal .

Now let A be an L-H-bi-Galois object. By symmetry it is enough to find a
right inverse for A. For this in turn it is enough to find some left H-Galois object
B such that A 2H B ∼= L as left L-comodule algebras. For B is an H-R-bi-Galois
object for some Hopf algebra R, and A 2H B is then an L-R-bi-Galois object.
But if A 2H B ∼= L as left L-comodule algebra, then R ∼= L by the uniqueness
of the right Hopf algebra in the bi-Galois extension L. More precisely, there is an
automorphism of the Hopf algebra L such that A 2H B ∼= Lf , where Lf has the
right L-comodule algebra structure induced along f . But then A 2H (Bf−1

) ∼= L
as L-bicomodule algebras.

We already know that L ∼= (A⊗A)co H , a subalgebra of A ⊗ Aop. From the
way the isomorphism was obtained in Remark 3.1.7, it is obviously left L-colinear,
with the left L-comodule structure on (A⊗A)co H induced by that of the left tensor
factor A. Thus it finally remains to find some left H-Galois object B such that
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A 2H B ∼= (A⊗A)co H . If the antipode of H is bijective, we may simply take
B := Aop, with the left comodule structure A 3 a 7→ S−1(a(1)) ⊗ a(0). If the
antipode ofH is not bijective, we can take B := (H ⊗A)co H , where the coinvariants
are taken with respect to the diagonal comodule structure, the algebra structure
is that of a subalgebra of H ⊗ Aop, and the left H-comodule structure is induced
by that of H. By contrast to the case where the antipode is bijective, it is not
entirely trivial to verify that B is indeed a left H-Galois object. We refer to [33]
for details at this point. However, it is easy to see that the obvious isomorphism
A 2H B = A 2H (H ⊗A)co H ∼= (A 2H H ⊗A)co H ∼= (A⊗A)co H is a left L-
comodule algebra map.

3.3 The structure of Hopf bimodules. Let A be an L-H-bi-Galois object.
We have studied already in Section 2.6 the monoidal category AMH

A of Hopf bimod-
ules, which allows an underlying functor to the category Mk which is monoidal.
The result of this section is another characterization of the left Hopf algebra L:
It is precisely that Hopf algebra for which we obtain a commutative diagram of
monoidal functors

AMH
A

∼ //

(—)co H

##FFFFFFFF LM

||zzzzzzzz

Mk

(3.3.1)

in which the top arrow is an equivalence, and the unmarked arrow is the underlying
functor.

Theorem 3.3.1 Let A be an L-H-bi-Galois object. Then a monoidal category
equivalence LM→ AMH

A is defined by sending V ∈ LM to V ⊗A with the obvious
structure of a Hopf module in MH

A , and the additional left A-module structure
x(v⊗y) = x(−1) ·v⊗x(0)y. The monoidal functor structure is given by the canonical
isomorphism (V ⊗A) ⊗A (V ⊗A) ∼= V ⊗W ⊗A.

Proof We know that every Hopf module in MH
A has the form V ⊗A.

. for some
k-module V . It remains to verify that left A-module structures on V ⊗A making it
a Hopf module in AMH

A are classified by left L-module structures on V . A suitable
left A-module structure is a colinear right A-module map µ : A⊗ V ⊗A→ V ⊗A,
and such maps are in turn in bijection with colinear maps σ : A ⊗ V → V ⊗ A.
By the general universal property of L, such maps σ are in turn classified by maps
µ0 : L⊗V → V through the formula σ(a⊗v) = a(−1) ·v⊗a(0), with µ0(`⊗v) =: ` ·v.
Now it only remains to verify that µ0 is an L-module structure if and only if µ,
which is now given by µ(x ⊗ v ⊗ y) = x(−1) · v ⊗ x(0)y, is an A-module structure.
We compute

x(y(v ⊗ z)) = x(y(−1) · v ⊗ y(0)z) = x(−1) · (y(−1) · v)⊗ x(0)y(0)z

(xy)(v ⊗ z) = (xy)(−1) · v ⊗ (xy)(0)z = (x(−1)y(−1)) · v ⊗ x(0)y(0)z

so that the associativity of µ and µ0 is equivalent by another application of the
universal property of L. We skip unitality.

We have seen that the functor in consideration is well-defined and an equiva-
lence. To check that it is monoidal, we should verify that the canonical isomorphism
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f : V ⊗W ⊗A→ (V ⊗A) ⊗A (W ⊗A) is a left A-module map for V,W ∈ L. Indeed

f(x(v ⊗ w ⊗ y)) = f(x(−1) · (v ⊗ w)⊗ x(0)y) = f(x(−2) · v ⊗ x(−1) · w ⊗ x(0)y)

= x(−2) · v ⊗ 1⊗ x(−1) · w ⊗ x(0)y = x(−1) · v ⊗ 1⊗ x(0)(w ⊗ y)

= x(−1) · v ⊗ x(0) ⊗ (w ⊗ y) = x(v ⊗ 1)⊗ 1⊗ y = xf(v ⊗ w ⊗ y)

for all x, y ∈ A, v ∈ V and w ∈W .

Corollary 3.3.2 Let A be an L-H-Bi-Galois object. Then there is a bijection
between isomorphism classes of

1. Pairs (T, f), where T is an H-comodule algebra, and f : A → T is an H-
comodule algebra map, and

2. L-module algebras R
It is given by R := T co H , and T := R#A := R ⊗ A with multiplication given by
(r#x)(s#y) = r(x(−1) · s)#x(0)y.

Note in particular that every T as in (1) is a left faithfully flat H-Galois extension
of its coinvariants.

Remark 3.3.3 If A is a faithfully flat H-Galois extension of B, then AMH
A is

still a monoidal category, and the coinvariants functor is still a monoidal functor to
BMB . It is a natural question whether there is still some L whose modules classify
Hopf modules in the same way as we have shown in this section for the case B = k,
and whether L is still a Hopf algebra in any sense. This was answered in [35] by
showing that L = (A⊗A)co H still yields a commutative diagram (3.3.1), and that
L now has the structure of a ×B-bialgebra in the sense of Takeuchi [48]. These
structures have been studied more recently under the name of quantum groupoids
or Hopf algebroids. They have the characteristic property that modules over a ×B-
bialgebra still form a monoidal category, so that it makes sense to say that (3.3.1)
will be a commutative diagram of monoidal functors. The ×B-bialgebra L can step
in in some cases where the left Hopf algebra L is useful, but B 6= k. Since the
axiomatics of ×B-bialgebras are quite complicated, we will not pursue this matter
here.

3.4 Galois correspondence. The origin of bi-Galois theory is the construc-
tion in [18] of certain separable extensions of fields that are Hopf-Galois with more
than one possibility for the Hopf algebra. The paper [18] also contains information
about what may become of the classical Galois correspondence between subfields
and subgroups in this case. In particular, there are examples of classically Galois
field extensions that are also H-Galois in such a way that the quotient Hopf al-
gebras of H correspond one-to-one to the normal intermediate fields, that is, to
the intermediate fields that are stable under the coaction of the dual Hopf algebra
kG of the group algebra of the Galois group. Van Oystaeyen and Zhang [56] then
constructed what we called L(A,H) above for the case of commutative A (and H),
and proved a correspondence between quotients of L(A,H) and H-costable inter-
mediate fields in case A is a field. The general picture was developed in [33, 36].
We will not comment on the proof here, but simply state the results.

Theorem 3.4.1 Let A be an L-H-Bi-Galois object for k-flat Hopf algebras
L,H with bijective antipodes.

A bijection between



Hopf-Galois and Bi-Galois Extensions 33

• coideal left ideals I ⊂ L such that L/I is k-flat and L is a faithfully coflat
left (resp. right) L/I-comodule, and

• H-subcomodule algebras B ⊂ A such that B is k-flat and A is a faithfully
flat left (resp. right) B-module

is given as follows: To a coideal left ideal I ⊂ L we assign the subalgebra B :=
co AL/I. To an H-subcomodule algebra B ⊂ A we assign the coideal left ideal
I ⊂ L ∼= (A⊗A)co H such that L/I ∼= (A ⊗B A)co H .

Let I ⊂ L and B ⊂ A correspond to each other as above. Then
1. I is a Hopf ideal if and only if B is stable under the Miyashita-Ulbrich action

of H on A.
2. I is stable under the left coadjoint coaction of L on itself if and only if B is

stable under the coaction of L on A.
3. I is a conormal Hopf ideal if and only if B is stable both under the coaction

of L and the Miyashita-Ulbrich action of H on A.

As the special case A = H, the result contains the quotient theory of Hopf
algebras, that is, the various proper Hopf algebra analogs of the correspondence
between normal subgroups and quotient groups of a group. See [50, 26].

3.5 Galois objects over tensor products. Let H1,H2 be two Hopf al-
gebras. If both Hi are cocommutative, then Gal(Hi) are groups under cotensor
product, as well as Gal(H1 ⊗ H2). If both Hi are also commutative, then we
have the subgroups of these three groups consisting of all commutative Galois ex-
tensions. If, in particular, we take both Hi to be the duals of group algebras of
abelian groups, then H1 ⊗H2 is the group algebra of the direct sum of those two
groups, and the groups of commutative Galois objects are the Harrison groups. It
is an old result that the functor “Harrison group” is additive. This means that
Har(H1 ⊗ H2) ∼= Har(H1) ⊕ Har(H2) as (abelian) groups. The same result holds
true unchanged if we consider general commutative and cocommutative Hopf alge-
bras. However, the same is not true for the complete Gal(—) groups. A result of
Kreimer [24] states very precisely what is true instead: For two commutative co-
commutative finitely generated projective Hopf algebras, we have an isomorphism
of abelian groups

Gal(H1)⊕Gal(H2)⊕Hopf(H2,H
∗
1 ) → Gal(H1 ⊗H2),

where Hopf(H2,H
∗
1 ) denotes the set of all Hopf algebra maps from H2 to H∗

1 , which
is a group under convolution because H2 is cocommutative and H∗

1 is commuta-
tive. The assumption that both Hopf algebras Hi are commutative is actually not
necessary. One can also drop the assumption that they be finitely generated projec-
tive, if one replaces the summand Hopf(H2,H

∗
1 ) by the group (under convolution)

Pair(H2,H1) of all Hopf algebra pairings between H2 and H1; this does not change
anything if H1 happens to be finitely generated projective.

One cannot, however, get away without the assumption of cocommutativity:
First of all, of course, we do not have any groups in the case of general Hi. Secondly,
some of the information in the above sequence does survive on the level of pointed
sets, but not enough to amount to a complete description of Gal(H1 ⊗H2).

As we will show in this section (based on [39]), Bi-Galois theory can come to the
rescue to recover such a complete description. Instead of pairings between the Hopf
algebras Hi, one has to take into account pairings between the left Hopf algebras
Li in certain Hi-Galois objects.



34 Peter Schauenburg

Lemma 3.5.1 Let H1,H2 be two k-flat Hopf algebras, and A a right H-
comodule algebra for H = H1 ⊗H2.

We have A1 := Aco H2 ∼= A 2H H1 and A2 := Aco H1 ∼= A 2H H2.
A is an H-Galois object if and only if Ai is an Hi-Galois object for i = 1, 2.
If this is the case, then multiplication in A induces an isomorphism A1#A2 →

A, where the algebra structure of A1#A2 is a smash product as in Corollary 3.3.2
for some L2-module structure on A1, where L2 := L(A2,H2); the H-comodule
structure is the obvious one.

Proof It is straightforward to check that Aco Hi ∼= A 2H Hj for i 6= j. We
know from Proposition 2.5.7 that Ai are Hopf-Galois objects if A is one.

Now assume that Ai is a faithfully flat Hi-Galois extension of k for i = 1, 2. By
Corollary 3.3.2 we know that multiplication in A induces an isomorphism A1#A2 →
A for a suitable L2-module algebra structure on A1. We view the Galois map
A ⊗ A → A ⊗ H as a map of Hopf modules in MH2

A2
. Its H2-coinvariant part is

the map A⊗ A1 → A⊗H1 given by x⊗ y 7→ xy(0) ⊗ y(1), which we know to be a
bijection. Thus the canonical map for A is a bijection, and A is faithfully flat since
it is the tensor product of A1 and A2.

To finish our complete description of H1⊗H2-Galois objects, we need two more
consequences from the universal property of the left Hopf algebra:

Lemma 3.5.2 Let A be an L-H-bi-Galois object, and let R be an L-module
algebra and F -comodule algebra for some k-flat bialgebra F . Then R#A as in
Corollary 3.3.2 is an F ⊗ H-comodule algebra if and only if it is an F -comodule
algebra, if and only if R is an L-F -dimodule in the sense that (` · r)(0)⊗ (` · r)(1) =
` · r(0) ⊗ r(1) holds for all r ∈ R and ` ∈ L.

Proof Clearly R#A is an F ⊗ H-comodule algebra if and only if it is an F -
comodule algebra, since we already know it to be an H-comodule algebra.

Now (ignoring the unit conditions) R#A is an F -comodule algebra if and only
if

r(0)(x(−1) · s)(0)#x(0)y ⊗ r(1)(x(−1) · s)(1)
r(0)(x(−1) · s(0))#x(0)y ⊗ r(1)s(1)

agree for all r, s ∈ R and x, y ∈ A. By the universal property of L, this is the same
as requiring

r(0)(` · s)(0) ⊗ r(1)(` · s)(1) = r(0)(` · s(0))⊗ r(1)s(1)

for all r, s ∈ R and ` ∈ A, which in turn is the same as requiring the dimodule
condition for R.

Lemma 3.5.3 Let A be an L-H-bi-Galois object, B a k-module, and µ : B ⊗
A→ A an H-colinear map. Then µ = Φ(τ), that is, µ(b⊗ a) = τ(b⊗ a(−1))a(0) for
a unique τ : B ⊗ L→ A. Moreover,

1. Assume that B is a coalgebra. Then µ is a measuring if and only if τ(b ⊗
`m) = τ(b(1) ⊗ `)τ(b(2) ⊗ m) and τ(b ⊗ 1) = ε(b) hold for all b ∈ C and
`,m ∈ L.

2. Assume that B is an algebra. Then µ is a module structure if and only if
τ(bc⊗ `) = τ(b⊗ `(2))τ(c⊗ `(1)) and τ(1⊗ `) = ε(`) hold for all b, c ∈ B and
` ∈ L.
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3. Assume that B is a bialgebra. Then µ makes A a B-module algebra if and
only if τ is a skew pairing between B and L, in the sense of the following
definition:

Definition 3.5.4 Let B and L be two bialgebras. A map τ : B ⊗ L → k is
called a skew pairing if

τ(b⊗ `m) = τ(b(1) ⊗ `)τ(b(2) ⊗m), τ(b⊗ 1) = ε(b)

τ(bc⊗ `) = τ(b⊗ `(2))τ(c⊗ `(1)), τ(1⊗ `) = ε(`)

hold for all b, c ∈ B and `,m ∈ L. Note that if B is finitely generated projective,
then a skew pairing is the same as a bialgebra morphism Lcop → B∗

Proof We write µ(b ⊗ a) = b · a. We have µ = Φ(τ) for τ : B ⊗ L → k as a
special case of the universal properties of L.

If B is a coalgebra, then

b · (xy) = τ(b⊗ x(−1)y(−1))x(0)y(0)

(b(1) · x)(b(2) · y) = τ(b(1) ⊗ x(−1))τ(b(2) ⊗ y(−1))x(0)y(0)

are the same for all b ∈ B, x, y ∈ A if and only if τ(b⊗ `m) = τ(b(1)⊗ `)τ(b(2)⊗m)
for all b ∈ B, `,m ∈ L, by the universal property again. We omit treating the unit
condition for a measuring

If B is an algebra then

(bc) · x = τ(bc⊗ x(−1))x(0)

b · c · x = τ(c⊗ x(−1))b · x(0) = τ(c⊗ x(−2))τ(b⊗ x(−1))x(0)

agree for all b, c ∈ B, x ∈ A if and only if τ(bc ⊗ `) = τ(c ⊗ `(1))τ(b ⊗ `(2)) holds
for all b, c ∈ B and ` ∈ L. Again, we omit treating the unit condition for a module
structure.

Since a module algebra structure is the same as a measuring that is a module
structure, we are done.

Now we merely need to put together all the information obtained so far to get
the following theorem.

Theorem 3.5.5 Let H1,H2 be two k-flat Hopf algebras, and put H = H1⊗H2.
The map

π : Gal(H1 ⊗H2) → Gal(H1)×Gal(H2);A 7→ (A 2
H
H1, A 2

H
H2)

is surjective. For Ai ∈ Gal(Hi) let Li := L(Ai,Hi). The Hopf algebra automor-
phism groups of Li act on the right on the set of all skew pairings between L1 and
L2. We have a bijection

SPair(L1, L2)/CoInn(L1)× CoInn(L2) → π−1(A1, A2),

given by assigning to the class of a skew pairing τ the algebra A1#τA2 := A1 ⊗A2

with multiplication (r#x)(s#y) = rτ(s(−1) ⊗ x(−1))s(0)#x(0)y.
In particular, we have an exact sequence

CoInn(H1)× CoInn(H2) → SPair(L2, L1) → Gal(H1 ⊗H2) → Gal(H1)×Gal(H2)
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Proof Since π(A1 ⊗ A2) = (A1, A2), the map π is onto. Fix Ai ∈ Gal(Hi).
Then the inverse image of A1 ⊗ A2 under π consists of all those H-Galois objects
A for which A 2H Hi

∼= Ai. By the discussion preceding the theorem, every such
A has the form A = A1#A2, with multiplication given by an L2-module algebra
structure on A1, which makes A1 an L2-H1-dimodule, and is thus given by a skew
pairing between L1 and L2.

Assume that for two skew pairings τ, σ we have an isomorphism f : A1#τA2 →
A1#σA2. Then f has the form f = f1⊗f2 for automorphisms fi of theHi-comodule
algebra Ai, which are given by fi(x) = ui(x(−1))x(0) for algebra maps ui : Li →
k. The map f is an isomorphism of algebras if and only if f((1#x)(r#1)) =
f(1#x)f(r#1) for all r ∈ A1 and x ∈ A2. Now

f((1#x)(r#1)) = τ(r(−1) ⊗ x(−1))f(r(0)#x(0))

= τ(r(−2)u1(r(−1))⊗ x(−2)u2(x(−1)))r(0)#x(0)

and on the other hand

f(1#x)f(r#1) = u1(r(−2))u2(x(−2))τ(r(−1) ⊗ x(−1))r(0)#x(0)

These two expressions are the same for all r, x if and only if τ and σ agree up to
composition with coinn(u1)⊗coinn(u2), by yet another application of the universal
properties of L1 and L2.

3.6 Reduction. We take up once again the topic of reduction of the struc-
ture group, or the question of when an H-Galois extension reduces to a Q-Galois
extension for a quotient Hopf algebra Q of H. We treated the case of a general base
B of the extension in Section 2.7. Here, we treat some aspects that are more or
less special to the case of a trivial coinvariant subring k, and involve the left Hopf
algebra L.

We start by a simple reformulation of the previous results, using Corollary
3.1.4:

Corollary 3.6.1 Assume the hypotheses of Theorem 2.7.1. Consider the map
π : Gal(Q) → Gal(H) given by π(A) = A 2Q H, and let A ∈ Gal(H). Then
π−1(A) ∼= Hom−H

−H(K,A)/Alg(L, k), where L = L(A,H).

The criterion we have given above for reducibility of the structure quantum
group (i.e. the question when an H-Galois extension comes from a Q-Galois exten-
sion) is “classical” in the sense that analogous results are known for principal fiber
bundles: If we take away the Miyashita-Ulbrich action on AB , which is a purely
noncommutative feature, we have to find a colinear algebra map K → A, which is
to say an equivariant map from the principal bundle (the spectrum of A) to the
coset space of the structure group under the subgroup we are interested in. Another
criterion looks even simpler in the commutative case: According to [11, III §4, 4.6],
a principal fiber bundle, described by a Hopf-Galois extension A, can be reduced if
and only if the associated bundle with fiber the coset space of the subgroup in the
structure group admits a section. In our terminology, this means that there is an
algebra map (A⊗K)co H → B of the obvious map B → A; alternatively, one may
identify the associated bundle with Aco Q ∼= (A⊗K)co H , see below. As it turns
out, this criterion can be adapted to the situation of general Hopf-Galois extensions
as well. In the noncommutative case, there are, again, extra requirements on the
map Aco Q → B. In fact suitable such conditions were spelled out in [7, Sec.2.5],
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although the formulas there seem to defy a conceptual interpretation. As it turns
out, the extra conditions can be cast in a very simple form using the left Hopf
algebra L: The relevant map Aco Q → B should simply be L-linear with respect
to the Miyashita-Ulbrich action of L. Since the result now involves the left Hopf
algebra, it can only be formulated like that in the case B = k; we note, however,
that the result, as well as its proof, is still valid for the general case — one only has
to take the ×B-bialgebra L, see Remark 3.3.3, in place of the ordinary bialgebra L.

Theorem 3.6.2 Assume the hypotheses of Theorem 2.7.1, and let A be an L-
H-Bi-Galois object. Aco Q ⊂ A is a submodule with respect to the Miyashita-Ulbrich
action of L on A.

The following are equivalent:
1. A ∈ Gal(H) is in the image of Gal(Q) 3 A 7→ A 2Q H ∈ Gal(H).
2. There is an L-module algebra map Aco Q → k.

Proof The inverse of the Galois map of the left L-Galois extension A maps L
to (A⊗A)co H , so it is straightforward to check that Aco Q is invariant under the
Miyashita-Ulbrich action of L.

We have an isomorphism θ0 : A→ (A⊗H)co H with θ(a) = a(0) ⊗ S(a(1)) and
θ−1
0 (a⊗h) = aε(h). One checks that θ0(a) ∈ (A⊗K)co H if and only if a ∈ Aco Q, so

that we have an isomorphism θ : Aco Q → (A⊗K)co H given by θ(a) = a(0)⊗S(a(1)).
It is obvious that θ is an isomorphism of algebras, if we regard (A⊗K)co H as a
subalgebra of A ⊗ Kop, but we would like to view this in a more complicated
way: Since K is an algebra in the center of MH , we can endow A ⊗ K with the
structure of an algebra in MH by setting (a ⊗ x)(b ⊗ y) = ab(0) ⊗ (x ↼ b(1))y. If
x⊗ a ∈ (A⊗K)co H , then (a⊗ x)(b⊗ y) = ab(0) ⊗ (x ↼ b(1))y = ab(0) ⊗ y(0)(x ↼
b(1)y(1)) = ab⊗ yx, so (A⊗K)co H is a subalgebra of A⊗Kop.

Now the obvious map A → A ⊗K is an H-colinear algebra map, so A ⊗K is
an algebra in the monoidal category AMH

A and hence (A⊗K)co H is an L-module
algebra by Corollary 3.3.2. Writing `(1) ⊗ `(2) for the preimage of ` ⊗ 1 under
the Galois map for the left L-Galois extension A, we can compute the relevant
L-module structure as ` � (a ⊗ x) = `(1)(a ⊗ x)`(2) = `(1)a`(2)(0) ⊗ x ↼ `(2)(1). It
is immediate that θ−1 is L-linear.

Now we have a bijection between H-colinear maps f : K → A and H-colinear
and left A-linear maps f̂ : A⊗K → A given by f(x) = f̂(1⊗x) and f̂(a⊗x) = af(x).
Let us check that f is a right H-module algebra map if and only if f̂ is an A-ring
map in MH . First, assume that f is an H-module algebra map. Then

f̂((a⊗ x)(b⊗ y)) = f̂(ab(0) ⊗ (x ↼ b(1))y)

= ab(0)f(x ↼ b(1))f(y)

= ab(0)(f(x) ↼ b(1))f(y)

= af(x)bf(y) = f̂(a⊗ x)f̂(b⊗ y),

and f̂(1⊗ a) = a. Conversely, assume that f̂ is an A-ring morphism in MH . Then
f is trivially an algebra map, and

f(x)a = f̂(1⊗x)f̂(a⊗1) = f̂((1⊗x)(a⊗1)) = f̂(a(0)⊗x ↼ a(1)) = a(0)f(x ↼ a(1))
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for all a ∈ A and x ∈ K implies that f is H-linear.
Finally, we already know that A-ring morphisms f̂ : A⊗K → A in MH , that is,

algebra maps in AMH
A , are in bijection with L-module algbra maps g : (A⊗K)co H →

k.

If we want to reduce the right Hopf algebra in an L-H-bi-Galois extension, it
is of course also a natural question what happens to the left Hopf algebra in the
process:

Lemma 3.6.3 Assume the situation of Theorem 2.7.1. Let A be a Q-Galois
object, and A the corresponding H-Galois object. Then for any V ∈ MH the map
(V ⊗A)co H → (V ⊗A)

co Q
induced by the surjection A→ A is an isomorphism.

Proof It is enough to check that α : (V ⊗A)co H → (V ⊗A)
co Q

is bijective
after tensoring with A. We compose α⊗A with the isomorphism (V ⊗A)

co Q⊗A→
V ⊗A from the structure theorem for Hopf modules in MQ

A
, and have to check that

(V ⊗A)co H ⊗A→ (V ⊗A)
co Q ⊗A→ V ⊗A; v ⊗ a⊗ b 7→ v ⊗ ab

is bijective. But this is the image under the equivalence MH
K → MQ of the iso-

morphism

(V ⊗A)co H ⊗A→ V ⊗A; v ⊗ a⊗ b→ v ⊗ ab

from the structure theorem for Hopf modules in MH
A .

Theorem 3.6.4 Assume the situation of Theorem 2.7.1, let A be an H-Galois
object, f : K → A a Yetter-Drinfeld algebra map, and A = A/Af(K+) the corre-
sponding Q-Galois object.

Using the identification L := L(A,H) = (A⊗A)co H , the left Hopf algebra of
A is given by

L(A,Q) = (A ⊗
K
A)co H

,

where the K-module structure of A is induced via f .

Proof We have to verify that the surjection A → A induces an isomorphism
(A ⊗K A)co H → (A⊗A)

co Q
. Since (—)co H : MH

A → Mk is an equivalence, this
amounts to showing that we have a coequalizer

(A⊗K ⊗A)co H ⇒ (A⊗A)co H → (A⊗A)
co Q → 0.

Using Lemma 3.6.3 this means a coequalizer

(A⊗K ⊗A)
co Q

⇒ (A⊗A)
co Q → (A⊗A)

co Q → 0.

Since (—)co Q : MQ

A
→ Mk is an equivalence, we may consider this before taking

the Q-coinvariants, when it is just the definition of A = A/Af(K+) tensored with
A.
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4 Appendix: Some tools

4.1 Monoidal category theory. A monoidal category C = (C,⊗,Φ, I, λ, ρ)
consists of a category C, a bifunctor ⊗ : C ×C → C, a natural isomorphism Φ: (X⊗
Y )⊗Z → X ⊗ (Y ⊗Z), an object I, and natural isomorphisms λ : I ⊗X → X and
ρ : X ⊗ I → X, all of which are coherent. This means that all diagrams that one
can compose from Φ (which rearranges brackets), λ, ρ (which cancel instances of
the unit object I) and their inverses commute. By Mac Lane’s coherence theorem,
it is actually enough to ask for one pentagon of Φ’s, and one triangle with λ, ρ, and
Φ, to commute in order that all diagrams commute. A monoidal category is called
strict if Φ, λ, and ρ are identities.

The easiest example of a monoidal category is the category Mk of modules
over a commutative ring, with the tensor product over k and the canonical isomor-
phisms expressing associativity of tensor products. Similarly, the category RMR of
bimodules over an arbitrary ring R is monoidal with respect to the tensor product
over R. We are interested in monoidal category theory because of its very close
connections with Hopf algebra theory. If H is a bialgebra, then both the category
of, say, left H-modules, and the category of, say, right H-comodules have natu-
ral monoidal category structures. Here, the tensor product of V,W ∈ HM (resp.
V,W ∈ MH) is V ⊗W , the tensor product over k, equipped with the diagonal
module structure h(v ⊗ w) = h(1)v ⊗ h(2)w (resp. the codiagonal comodule struc-
ture δ(v ⊗ w) = v(0) ⊗ w(0) ⊗ v(1)w(1). The unit object is the base ring k with the
trivial module (resp. comodule) structure induced by the counit ε (resp. the unit
element of H). Since the associativity and unit isomorphisms in all of these exam-
ples are “trivial”, it is tempting never to mention them at all, practically treating
all our examples as if they were strict monoidal categories; we will do this in all
of the present paper. In fact, this sloppiness is almost justified by the fact that
every monoidal category is monoidally equivalent (see below) to a strict one. For
the examples in this paper, which are categories whose objects are sets with some
algebraic structure, the sloppiness is even more justified [40].

A weak monoidal functor F = (F , ξ, ξ0) : C → D consists of a functor F : C →
D, a natural transformation ξ : F(X) ⊗ F(Y ) → F(X ⊗ Y ) and a morphism
ξ0 : F(I) → I making the diagrams

(F(X)⊗F(Y ))⊗F(Z)

Φ

��

ξ⊗1 // F(X ⊗ Y )⊗F(Z)
ξ // F((X ⊗ Y )⊗ Z)

F(Φ)

��
F(X)⊗ (F(Y )⊗F(Z))

1⊗ξ
// F(X)⊗F(Y ⊗ Z)

ξ
// F(X ⊗ (Y ⊗ Z))

commute and satisfying

F(λ)ξ(ξ0 ⊗ id) = λ : I ⊗F(X) → F(X)

F(ρ)ξ(id ⊗ ξ0) = ρ : F(X)⊗ I → F(X).

A standard example arises from a ring homomorphism R → S. The restriction
functor SMS → RMR is a weak monoidal functor, with ξ : M ⊗R N → M ⊗S N
for M,N ∈ SMS the canonical surjection.

A monoidal functor is a weak monoidal functor in which ξ and ξ0 are isomor-
phisms. Typical examples are the underlying functors HM→Mk and MH →Mk
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for a bialgebra H. In this case, the morphisms ξ, ξ0 are even identities; we shall
say that we have a strict monoidal functor.

A prebraiding for a monoidal category C is a natural transformation σXY : X⊗
Y → Y ⊗X satisfying

σX,Y⊗Z = (Y ⊗ σXZ)(σXY ⊗ Z) : X ⊗ Y ⊗ Z → Y ⊗ Z ⊗X

σX⊗Y,Z = (σXZ ⊗ Y )(X ⊗ σY Z) : X ⊗ Y ⊗ Z → Z ⊗X ⊗ Y

σXI = σIX = idX

A braiding is a prebraiding that is an isomorphism. A symmetry is a braiding with
σXY = σ−1

Y X . The notion of a symmetry captures the properties of the monoidal
category of modules over a commutative ring. For the topological flavor of the
notion of braiding, we refer to Kassel’s book [22]. We call a (pre)braided category
a category with a (pre)braiding.

The (weak) center construction produces a (pre)braided monoidal category
from any monoidal category: Objects of the weak center Z0(C) are pairs (X,σX,—)
in which X ∈ C, and σXY : X ⊗ Y → Y ⊗X is a natural transformation satisfying

σX,Y⊗Z = (Y ⊗ σXZ)(σXY ⊗ Z) : X ⊗ Y ⊗ Z → Y ⊗ Z ⊗X

for all Y,Z ∈ C, and σXI = idX . The weak center is monoidal with tensor product
(X,σX,—)⊗ (Y, σY,—) = (X ⊗ Y, σX⊗Y,—), where

σX⊗Y,Z = (σXZ ⊗ Y )(X ⊗ σY Z) : X ⊗ Y ⊗ Z → Z ⊗X ⊗ Y

for all Z ∈ C, and with neutral element (I, σI,—), where σIZ = idZ . The weak
center is prebraided with the morphism σXY as the prebraiding of X and Y . The
center Z(C) consists of those objects (X,σX—) ∈ Z0(C) in which all σXY are
isomorphisms.

The main example of a (pre)braided monoidal category which we use in this
paper is actually a center. Let H be a Hopf algebra. The category Z0(MH)
is equivalent to the category YDH

H of right-right Yetter-Drinfeld modules, whose
objects are right H-comodules and right H-modules V satisfying the condition

(v ↼ h)(0) ⊗ (v ↼ h)(1) = v(0) ↼ h(2) ⊗ S(h(1))v(1)h(3)

for all v ∈ V and h ∈ H. A Yetter-Drinfeld module V becomes an object in the
weak center by

σV W (v ⊗ w) = w(0) ⊗ v ↼ w(1)

for all v ∈ V and w ∈ W ∈ MH . It is an object in the center if and only if H has
bijective antipode, in which case σ−1

V W (w ⊗ v) = v ↼ S−1(w(1))⊗ w(0).

4.2 Algebras in monoidal categories. At some points in this paper we
have made free use of the notion of an algebra within a monoidal category, modules
over it, and similar notions. In this section we will spell out (without the easy
proofs) some of the basic facts. It is possible that the notion of center that we
define below is new.

Let C be a monoidal category, which we assume to be strict for simplicity. An
algebra in C is an object A with a multiplication ∇ : A⊗A→ A and a unit η : I → A

satisfying associativity and the unit condition that A ∼= A ⊗ I
A⊗η−−−→ A ⊗ A

∇−→ A
(and a symmetric construction) should be the identity. It should be clear what
a morphism of algebras is. A left A-module in C is an object M together with a
module structure µ : A ⊗M → M which is associative and fulfills an obvious unit
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condition. It is clear how to define right modules and bimodules in a monoidal
category.

An algebra in the (pre)braided monoidal category C is said to be commutative
if ∇A = ∇Aσ : A⊗A→ A. Obviously we can say that a subalgebra B in A (or an
algebra morphism ι : B → A) is central in A if

∇A(ι⊗A) = ∇AσAA(ι⊗A) = ∇A(A⊗ ι)σBA : B ⊗A→ A.

Since the last notion needs only the braiding between B and A to be written down,
it can be generalized as follows:

Definition 4.2.1 Let A be an algebra in C. A morphism f : V → A in C from
an object V ∈ Z0(C) is called central, if ∇A(f ⊗A) = ∇A(A⊗ f)σV A : V ⊗A→ A.

A center of A is a couniversal central morphism c : C → A, that is, an object
C ∈ Z0(C) with a morphism c : C → A in C such that every central morphism
f : V → A factors through a morphism g : V → C in Z0(C).

It is not clear whether a center of an algebra A exists, or if it does, if it is a
subobject in C, though this is true in our main application Lemma 2.1.9. However,
the following assertions are not hard to verify:

Remark 4.2.2 Let A be an algebra in C, and assume that A has a center
(C, c).

1. Any center of A is isomorphic to C.
2. C is a commutative algebra in Z0(C).
3. If R is an algebra in Z0(C) and f : R→ A is central and an algebra morphism

in C, then its factorization g : R→ C is an algebra morphism.

Let A and B be algebras in the prebraided monoidal category C. Then A⊗B
is an algebra with multiplication

A⊗B ⊗A⊗B
A⊗σBA⊗B−−−−−−−→ A⊗A⊗B ⊗B

∇A⊗∇B−−−−−→ A⊗B.

Again, this is also true if we merely assume B to be an algebra in the weak center
of C.

If B is a commutative algebra in the weak center of C, then every right B-
module M has a natural left B-module structure

B ⊗M
σBM−−−→M ⊗B

µ−→M

which makes it a B-B-bimodule.
Provided that the category C has coequalizers, one can define the tensor product

of a right A-module M and a left A-module N by a coequalizer

M ⊗A⊗N ⇒ M ⊗N →M ⊗
A
N.

If M is an L-A-bimodule, and N is an A-R-bimodule, then M ⊗A N is an L-R-
bimodule provided that tensoring on the left with L and tensoring on the right
with R preserves coequalizers. The extra condition is needed to show, for example,
that L ⊗ (M ⊗A N) → M ⊗A N is well-defined, using that L ⊗ (M ⊗A N) ∼=
(L⊗M) ⊗A N , which relies on L⊗— preserving the relevant coequalizer.

Some more technicalities are necessary to assure that the tensor product of
three bimodules is associative. Assume given in addition an S-R-bimodule T such
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that T ⊗— and S⊗— preserve coequalizers. Since colimits commute with colimits,
T ⊗S — also preserves coequalizers, and we have in particular a coequalizer

T ⊗
S

(M ⊗A⊗N) ⇒ T ⊗
S

(M ⊗N) → T ⊗
S

(M ⊗
A
N).

To get the desired isomorphism

T ⊗
L

(M ⊗
A
N) ∼= (T ⊗

L
M) ⊗

A
N,

we need to compare this to the coequalizer

(T ⊗
S
M)⊗A⊗N ⇒ (T ⊗

S
M)⊗N → (T ⊗

S
M) ⊗

A
N,

which can be done if we throw in the extra condition that the natural morphism
(T ⊗S M)⊗X → T ⊗S (M ⊗X) is an isomorphism for all X ∈ C.

4.3 Cotensor product. To begin with, the cotensor product of comodules is
nothing but a special case of the tensor product of modules in monoidal categories:
A k-coalgebra C is an algebra in the opposite of the category of k-modules, so the
cotensor product of a right C-comodule M and a left C-comodule N (two modules
in the opposite category) is defined by an equalizer

0 →M 2
C
N →M ⊗N ⇒ M ⊗ C ⊗N.

We see that the cotensor product of a B-C-bicomodule M and a C-D-bicomodule
N is a B-D-bicomodule provided that B and C are flat k-modules. Since flatness of
C is even needed to make sense of equalizers within the category of C-comodules,
it is assumed throughout this paper that all coalgebras are flat over k.

A right C-comodule V is called C-coflat if the cotensor product functor V 2C

—: CM→Mk is exact. Since V 2C (C ⊗W ) = V ⊗W for any k-module W , this
implies that V is k-flat. If V is k-flat, it is automatic that V 2C — is left exact.
Also, V 2C — commutes with (infinite) direct sums. From this we can deduce

Lemma 4.3.1 If V is a coflat right C-comodule, then for any k-module X and
any left C-comodule W the canonical map (V 2C W )⊗X → V 2C (W ⊗X) is a
bijection.

In particular, if D is another k-flat coalgebra, W is a C-D-bicomodule, and U
is a left D-comodule, then cotensor product is associative:

(V 2
C
W ) 2

D
U ∼= V 2

C
(W 2

D
U).

Proof The second claim follows from the first and the discussion at the end of
the preceding section. For the first, observe first that cotensor product commutes
with direct sums, so that the canonical map is bijective with a free module k(I)

in place of X. Now we choose a presentation k(I) → k(J) → X → 0 of X. Since
V 2C — commutes with this coequalizer, we see that the canonical map for X is
also bijective.

It is a well-known theorem of Lazard that a module is flat if and only if it is
a direct limit of finitely generated projective modules. It is well-known, moreover,
that a finitely presented module is flat if and only if it is projective. If k is a field,
and C a k-coalgebra, every C-comodule is the direct limit of its finite dimensional
subcomodules. Thus the following remarkable characterization of Takeuchi [47,
A.2.1] may seem plausible (though of course far from obvious):
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Theorem 4.3.2 Let k be a field, C a k-coalgebra, and V a C-comodule. Then
V is coflat if and only if C is injective (that is, an injective object in the category
of comodules).

We refer to [47] for the proof.
In Section 2.5 we have made use of a comodule version of Watts’ theorem

(which, in the original, states that every right exact functor between module cat-
egories is tensor product by a bimodule). For the sake of completeness, we prove
the comodule version here:

Lemma 4.3.3 Let C be a k-flat coalgebra, and F : CM→Mk an exact addi-
tive functor that commutes with arbitrary direct sums.

Then there is an isomorphism F(M) ∼= A 2C M , natural in M ∈ CM, for
some comodule A ∈MC which is k-flat and C-coflat.

Proof We first observe that F is an Mk-functor. That is to say, there is an
isomorphism F(M⊗V ) ∼= F(M)⊗V , natural in V ∈Mk, which is coherent (which
is to say, the two obvious composite isomorphisms F(M⊗V ⊗W ) ∼= F(M)⊗V ⊗W
coincide, and F(M ⊗ k) ∼= F(M)⊗ k is trivial). We only sketch the argument: To
construct ζ : F(M) ⊗ V → F(M ⊗ V ), choose a presentation k(I) p→ k(J) → V .
The map p can be described by a column-finite matrix, which can also be used to
define a morphism p̂ : F(M)(I) → F(M)(J), which has both F(M)⊗V and (since F
commutes with cokernels) F(M⊗V ) as its cokernel, whence we get an isomorphism
ζ between them. Clearly ζ is natural in M . Naturality in V is proved along with
independence of the presentation: Let k(K) → k(L) → W be a presentation of
another k-module W , and f : V →W . By the Comparison Theorem for projective
resolutions, f can be lifted to a pair of maps f1 : k(J) → k(L) and f2 : k(I) → k(K).
Since the maps of free k-modules can be described by matrices, they give rise to a
diagram

F(M)(I) //

��

F(M)(J)

��
F(M)(K) // F(M)(L)

which can be filled to the right both by F(M) ⊗ f : F(M) ⊗ V → F(M) ⊗ W
and by F(M ⊗ f) : F(M ⊗ V ) → F(M ⊗W ). If W = V and f = id , this proves
independence of ζ of the resolution, and for a general choice of W and f it proves
naturality of ζ. Coherence is now easy to check.

The rest of our claim is now Pareigis’ version [30, Thm. 4.2] of Watts’ theorem
[57]. For completeness, we sketch the proof: Put A := F(C). Then A is a C-
comodule via

A = F(C)
F(∆)−−−→ F(.C ⊗ C) ∼= F(C)⊗ C = A⊗ C.

The functors F and A 2C — are isomorphic, since for M ∈ CM we have M ∼=
C 2C M , that is, we have an equalizer

M → .
C ⊗M ⇒

.
C ⊗ C ⊗M,

which is preserved by F , and hence yields an equalizer

F(M) → A⊗M ⇒ A⊗ C ⊗M.
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Finally, let us note the following associativity between tensor and cotensor
product:

Lemma 4.3.4 Let C be a coalgebra, A an algebra, M a right A-module, N
a left A-module and right C-comodule satisfying the dimodule condition (am)(0) ⊗
(am)(1) = am(0)⊗m(1) for all a ∈M and c ∈ C; finally let W be a left C-comodule.
There is a canonical map

M ⊗A (N 2C V ) → (M ⊗A N) 2C V , given by m⊗ (n⊗ v) 7→ (m⊗ n)⊗ v.
If M is flat as A-module, or V is coflat as left C-comodule, then the canonical

map is a bijection.

In fact, if M is flat, then M ⊗A — preserves the equalizer defining the cotensor
product. If V is coflat, we may argue similarly using Lemma 4.3.1.

4.4 Convolution and composition. Let C be a k-coalgebra and A a k-
algebra. The convolution product

f ∗ g = ∇A(f ⊗ g)∆C : C → a

defined for any two k-linear maps f, g : C → A is ubiquitous in the theory of coal-
gebras and bialgebras. It makes Hom(C,A) into an algebra, with the k-dual C∗ as
a special case. A lemma due to Koppinen (see [29, p.91] establishes a correspon-
dence of convolution with composition (which, of course, is an even more ubiquitous
operation throughout all of mathematics):

Lemma 4.4.1 Let C be a k-coalgebra, and A a k-algebra. Then

T = TC
A : Hom(C,A) 3 ϕ 7→ (a⊗ c 7→ aϕ(c(1))⊗ c(2)) ∈ End−C

A−(A⊗ C)

is an anti-isomorphism of k-algebras, with inverse given by T−1(f) = (A⊗εC)f(ηA⊗
C).

In particular, ϕ : C → A is invertible with respect to convolution if and only if
T (ϕ) is bijective.

The assertions are straightforward to check. Let us point out that bijectivity
of T is a special case of the following Lemma, which contains the facts that A⊗ V
is the free A-module over the k-module V , and W ⊗ C is the cofree C-comodule
over the k-module W :

Lemma 4.4.2 Let A be a k-algebra, C a k-coalgebra, and V a right C-
comodule, and W a left A-module. Then we have an isomorphism

T̃ : Hom(V,W ) 3 ϕ 7→ (a⊗ v 7→ aϕ(v(0))⊗ v(1)) ∈ Hom−C
A−(A⊗ V,W ⊗ C)

4.5 Descent. In this section we very briefly recall the mechanism of faithfully
flat descent for extensions of noncommutative rings. This is a very special case of
Beck’s theorem; a reference is [2].

Definition 4.5.1 Let η : R ⊂ S be a ring extension. A (right) descent data
from S to R is a right S-module M together with an S-module homomorphism
θ : M → M ⊗R S (also called a descent data on the module M) making the
diagrams

M
θ //

θ

��

M ⊗R S

θ⊗RS

��

M
θ //

HH
HH

HH
HH

HH

HH
HH

HH
HH

HH
M ⊗R S

m

��
M ⊗R S

M⊗Rη⊗RS // M ⊗R S ⊗R S M
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commute (where m is induced by the S-module structure of M). Descent data
(M, θ) from S to R form a category D(S ↓ R) in an obvious way.

If N is a right R-module, then the induced S-module N ⊗R S carries a natural
descent data, namely the map θ : N ⊗R S 3 n ⊗ s 7→ n ⊗ 1 ⊗ s ∈ N ⊗R S ⊗R S.
This defines a functor from MR to the category of descent data from S to R.

Theorem 4.5.2 (Faithfully flat descent) Let η : R ⊂ S be an inclusion of
rings.

S is faithfully flat as left R-module if and only if the canonical functor from
MR to the category of descent data from S to R is an equivalence of categories. If
this is the case, the inverse equivalence maps a descent data (M, θ) to

Mθ := {m ∈M |θ(m) = m⊗ 1}.

In particular, for every descent data (M, θ), the map f : (Mθ) ⊗R S 3 m⊗s 7→
ms ∈ M is an isomorphism with inverse induced by θ, i.e. f−1(m) = θ(m) ∈
Mθ ⊗R S ⊂M ⊗R S.
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