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1 Introduction

To keep technicalities to a minimum for the beginning of the introduction, we
start by letting H be a Hopf algebra with bijective antipode over a field k. A
right H-Galois object is a right H-Galois extension of the base field k, that is,
a right H-comodule algebra A with Aco H = k for which a certain canonical
map β : A ⊗ A → A ⊗H is bijective. Hopf-Galois extensions are an important
application and tool for the study of Hopf algebras. We refer to [9] and [6] for
more background and references.

Grunspan [3] has defined a quantum torsor to be an algebra T equipped with
an algebra map Θ: T → T ⊗T op⊗T and an algebra map ϑ : T → T subject to a
list of axioms; we will call Θ the torsor structure and have called ϑ the Grunspan
map in [8]. By and large, the idea of a quantum torsor allows us to define Hopf-
Galois objects without mentioning a Hopf algebra. The torsor structure is a
sort of (triple) comultiplication, and the Grunspan map generalizes the square
of the antipode of a Hopf algebra. Grunspan shows that every quantum torsor
in his sense is a Hopf-Galois object over a suitably constructed Hopf algebra
H. The paper [7] makes this an equivalent characterization by showing that
every H-Galois extension is also a torsor. While the torsor structure is quite
easy to find, the Grunspan map, written down explicitly in [7], is perhaps less
obvious. In [8] it was then shown that the Grunspan map can be eliminated
altogether from the axioms of a quantum torsor. Its uniqueness was already
observed by Grunspan, and it can be proved to exist via constructing a Hopf-
Galois extension from a torsor (without Grunspan map) and then a Grunspan
map from the Hopf-Galois extension.

In [7] the Grunspan map for an H-Galois object A was simply written down
explicitly. Here now is a conceptual reason for its existence: By [5], A is an L-H-
bi-Galois object (i.e. a left L-Galois object and a bicomodule) for a Hopf algebra
L with bijective antipode. Also by [5], bi-Galois objects are the morphisms
of a groupoid; the composition in the groupoid is the cotensor product, and
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the inverse of A can be constructed as the algebra Aop endowed with the H-
L-bicomodule structure(s) pulled back along the inverse S−1 of the antipode.
But surely the inverse of the inverse of A is A again, so there is an algebra
automorphism of A = (Aop)op. So far the conclusion is trivial, but observe that
the automorphism is a bicomodule algebra isomorphism from A to (Aop)op,
and the latter has the bicomodule structure(s) pulled back along S−2. In fact
one can plug the explicit knowledge of the groupoid structure on the set of
isomorphism classes of bi-Galois objects into the standard proof that (x−1)−1 =
x in a group(oid) to obtain the isomorphism explicitly, and it turns out to be
the Grunspan map.

Now assume that we set all of the above in a braided category B. So H is a
braided Hopf algebra, and A is a braided Hopf-Galois extension of the unit object
I. Then once again, taking the double inverse of A in the groupoid of bi-Galois
extensions will give A, so again there is an algebra isomorphism ϑ : A → (Aop)op.
This time, even this statement is not obvious: In the braided setting, taking the
opposite algebra is usually not involutive even up to isomorphism. Akrami and
Majid [1] recently introduced the term “ribbon algebra” for an algebra with an
isomorphism ϑ : A → (Aop)op. Our result shows that also in the braided setting
the square of the antipode of a Hopf algebra (an isomorphism H ∼= (Hop)op)
generalizes to a ribbon structure on each H-Galois object. Again, plugging
the explicit description of the groupoid structure into the proof that taking
inverses is an involution yields ϑ explicitly, and it is a Grunspan morphism for
the braided torsor A in a suitable sense.

Now saying all this we have tacitly assumed that bi-Galois theory in a braided
category works just the same as in the category of vector spaces — and this and
the above is of course only true under suitable assumptions of the existence of
equalizers and their preservation under certain tensor products. In particular,
we have to be able to construct a bi-Galois object out of a right Hopf-Galois
object, and bi-Galois objects should form a groupoid, with the inverse of A built
on the algebra Aop. And in fact most of the paper we will be occupied with
providing just this necessary background, making sure that there are no “truly
braided” obstacles to braided bi-Galois theory. We feel that this is justified at
least by the “braidedly nontrivial” conclusion that braided Hopf-Galois objects
are ribbon algebras. Also, we take care on the way to improve some previously
published statements and proofs also for the unbraided case.

For example, we construct the Hopf algebra L = (A⊗A)co H that makes
A an L-H-bi-Galois object not only under the assumption that A is faithfully
flat, but under the assumption that both A and L are flat. This may well prove
useless when we think of B the category of k-modules over a commutative ring
k. But for example in the opposite category of this, all objects are flat, so
the sharper statement is suitable for the study of the formal dual of bi-Galois
objects over a base ring (for which objects we hesitate to spell out a name). We
also give a better proof that faithfully flat bi-Galois objects form a groupoid
even if the Hopf algebras involved do not have bijective antipodes. The inverses
in this groupoid were already given in [5], but the proof there is rather clumsy.

After providing some general tools in Section 2 (mainly generalities on
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braided Hopf algebras as found in [4] and some generalizations of well-known
facts from the unbraided case) we deal with the basic properties of Hopf-Galois
objects (notably the restricted inverse γ : H → A⊗A of the Galois map β and
the Miyashita-Ulbrich action) in Section 3. We construct the Hopf algebra L
making an H-Galois object L-H-bi-Galois in Section 4, deal with the groupoid
structure on the set of isomorphism classes of bi-Galois objects in Section 5,
and specialize some of the results to the case where the antipodes are bijective
in Section 6. The material so far is a braided variant, with some improvements,
of that found (with references) in [9] or [6]. The conclusion that Galois objects
have a Grunspan morphism making them ribbon algebras is then reached in the
way sketched above in Section 7.
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2 Preliminaries

Throughout the paper, B denotes a monoidal category with equalizers and a
braiding τ . We say that an object X ∈ B is flat if tensoring with X preserves
equalizers. A flat object X is called faithfully flat if tensoring with X reflects
isomorphisms. We make free use of the notions of algebras, bialgebras, Hopf
algebras, module algebras and comodule algebras in B. We will assume that
B is strict monoidal. We will use graphical calculus to do computations in B,
using the notations

τV W =
V W

W V

and τ−1
V W =

W V

V W

for the braiding,

∇A =
A A
	
A

, ηA = r
A

, µ = µr =
M A

��

M

, and µ` =
A M
PP

M

for the multiplication and unit of an algebra A in B, the module structure of a
right A-module M ∈ BA, and the module structure of a left module M ∈ AB,

∆C =
C��

C C

, εC =
Cr , δ = δr =

M
PP

M C

, and δ` =
M

��

C M

for the comultiplication and counit of a coalgebra C in B, the comodule structure
of a right C-comodule M ∈ BC , and that of a left C-comodule M ∈ CB.
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We will use

S =

H

h+
H

and S−1 =

H

h−
H

for the antipode of a Hopf algebra in H and, if S is an isomorphism, its inverse.
We note that the antipode is an anti-coalgebra map and anti-algebra map in
the sense that

HhS� �
H H

=

H��
hS hS

H H

and

H H� hS
H

=

H HhS hS

	
H

.

In particular, every left H-comodule V is a right H-comodule, and, if S is
an isomorphism every left comodule W is a right comodule with comodule
structures

V
��

h+
V H

resp.

W
PP

h−
H W

(2.1)

A Yetter-Drinfeld module over a Hopf algebra H in B, as defined in the
braided case by Bespalov [2] is a right H-comodule and right H-module V
satisfying

V H��
��
PP


	
V H

=

V H
PP ��
�� 
	

V H

In [2] it is shown in particular that if the antipode of H is an isomorphism, then
the category of Yetter-Drinfeld modules is braided, with the braiding and its
inverse defined by

σV W =

V W
PP

��

W V

and σ−1
V W =

W V
PP

h−
��

V W.
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In particular, σ±1 are H-colinear isomorphisms.

Definition 2.1. Let H be a bialgebra in B, and V a right H-comodule. The
coinvariant subobject V co H ⊂ V is the equalizer of δ, V ⊗ η : V → V ⊗H. The
notation co HW is used for the left coinvariant subobject of a left H-comodule
W .

Proposition 2.2. Let A,R be right H-comodule algebras for a bialgebra H in
B. Then the right coinvariant subobject (A⊗R)co H taken with respect to the
codiagonal comodule structure is a subalgebra of A⊗Rop.

Proof. Put L := (A⊗R)co H and consider the inclusion ι : L → A⊗R. By the
calculation

L L

ι ι


	
	
PP PP


	
A R H

=

L L

ι ι

PP PP PP PP


	
	
	
	
� 

A R H

=

L L

ι ι

PP PP PP PP


	 
	� 
�  
	

A R H

=

=

L L

ι ι

PP


	 PP


	
	
A R H

=

L L

ι ι

r
	
	
A R H

we see that ∇A⊗Rop(ι⊗ι) factors over ι, so that L is a subalgebra of A⊗Rop.

The cotensor product V �H W of a right H-comodule V and a left H-
comodule W in B is defined as the equalizer of

δV ⊗W,V ⊗ δW : V ⊗W → V ⊗H ⊗W.

Lemma 2.3. Let A be a right H-comodule algebra in B.
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(1) For two left H-comodules V,W , the composition

A⊗ V ⊗A⊗W
A⊗τ⊗W−−−−−−→ A⊗A⊗ V ⊗W

∇⊗V⊗W−−−−−−→ A⊗ V ⊗W

induces a morphism ξ : (A �H V ) ⊗ (A �H W ) → A �H (V ⊗ W ).
Pictorially, writing X̃ := A �H X:

Ṽ W̃

ξ

ι

A V W

=

Ṽ W̃

ι ι


	
A V W

(2) For any left H-comodule algebra B, the subobject A �H B is a subalgebra
of A⊗B.

Proof. The second part can be proved using the first, but also simply by ob-
serving that A �H B is the equalizer of two algebra morphisms. For the first
part, the calculation

Ṽ W̃

ι ι


	
PP

A H V W

=

Ṽ W̃

ι ι

PP PP


	
	
A H V W

=

Ṽ W̃

ι ι

�� ��


	
	
A H V W

=

Ṽ W̃

ι ι

� 
�� ��


	
A H V W

shows that ξ is well-defined.

Lemma 2.4. Let H be a Hopf algebra whose antipode is an isomorphism, and let
V,W ∈ BH . Then (V ⊗W )co H = V �H W , where W has the left H-comodule
structure in (2.1).

Proof. V �H W is the equalizer of

F =

V W
PP

h−
V H W

and G =

V W

PP

V H W

,
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while (V ⊗W )co H is the equalizer of

F ′ =

V W
PP PP


	
V W H

and G′ =

V W

r
V W H

.

Since the following are mutually inverse automorphisms of V ⊗H:

V H
PP 
	

V H

V H
PP h+
	

V H

we obtain an isomorphism

T =

V H W
PP h+
	

V W H
and the calculations

TF =

V W
PP

h−
PP h+
	

V W H

=

V W
PP PP


	
V W H

= F ′

and

TG =

V W
PP

PP h+
	
V W H

=

V W
PP ��h+
	

V W H

=

V W

r
V W H

= G′

complete the proof.

3 Galois objects

We denote the unit object of B by I, and the unit of an algebra A in B by
η : I → A.
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Definition 3.1. Let A be a right H-comodule algebra in B. We say A is a right
H-Galois object, if η : I → A is the equalizer of δ,A⊗ η : A → A⊗H, and the
morphism

β =
(
A⊗A

A⊗δ−−−→ A⊗A⊗H
∇⊗H−−−→ A⊗H

)
is an isomorphism.

If A is an H-Galois object, we write

γ =
(

H
η⊗H−−−→ A⊗H

β−1

−−→ A⊗A

)
.

Remark 3.2. As a consequence of the definition

H

γ

PP� 
A H

=

H

r
A H.

(3.1)

Since β is a left A-module morphism, we have

β−1 =

A H

γ
	
A A,

(3.2)

and we also note

A
PP

γ
	
A A

=

Ar PP
	 γ� 
A A

=

Ar
β

β−1

A A

=

Ar
A A.

(3.3)

Lemma 3.3. Let A be a right H-comodule algebra in B. Then

A A
PP

β

A H H

=

A A

β

PP ��
h+
	

A H H.

8



Proof.

A A
PP
	��

PP h+
	
A H H

=

A A
PP

PP PP ��
	
	 h+

	

A H H

=

A A
PP

PP � �
	
	��h+� 
A H H

=

A A
PP PP� ���
	 h+
	� 
A H H

=

=

A A
PP PP


	
A H H

=

A A
PP

PP
	
A H H

Lemma 3.4. Let A be a right H-Galois object in B. Then

H

γ

PP

A A H

=

H� �
γ

A A H

(3.4)

H

γ

PP

H A A

=

H� �h+ γ

H A A

(3.5)

H H� 
γ

A A

=

H H

γ γ


	
	
A A

(3.6)
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r
γ

A A

= r r
A A

(3.7)

Proof. We prove (3.4) after applying β to the first two legs:

H

γ

PP

PP� 
A H H

=

H

γ

PP� ��
A H H

=
Hr ��

A H H

=

H� �
γ

PP� 
A H H.

(3.5) is a consequence of Lemma 3.3, which is used in the step marked (∗) in
the following calculation:

H

γ

PP

A A H

=

Hr
β−1

PP

A A H

(∗)
=

Hr ��
PP h+

β−1 
	
A H H

=

H��
γ h+

A A H.

We show (3.6) by applying β to the bottom and calculating

H H

γ γ

� 
	 PP� 
A H

=

H H

γ

γ
	
	
PP
	

A H

=

H H

γ

γ

PP PP


	
	
	� 
A H

=

H H

γ

γ PP

PP
	� 
	� 
A H

(3.1)
=
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=

H H

γ

PPr
	�  
	
A H

=

H H

γ

PP


	
	
A H

=

H H

γ

PP
	
� 

A H

(3.1)
=

H Hr 
	
A H

(3.1)
=

H H� 
γ

PP� 
A H.

(3.7) is easy to check.

Remark 3.5. (1) Equations (3.6) and (3.7) say that γ : H → Aop ⊗ A is an
algebra morphism. Assume that A has an additional left L-comodule
structure over a bialgebra L such that it is an L-H-bicomodule and a left
L-comodule algebra. Then γ induces an algebra homomorphism to the
subalgebra co L(A⊗A) ⊂ Aop ⊗A.

(2) Equation (3.4) says that γ is a right H-comodule map in an obvious sense.
If the antipode of H is an isomorphism, then (3.5) says that γ is also a
left H-comodule map, where the left comodule structure on A⊗A should
be defined by

A A
��

h−
H A A.

In the situation in (1), the two comodule structures of A ⊗ A induce
an H-bicomodule structure on co L(A⊗A) for which γ is a bicomodule
morphism.

Proof. (1) Note that the coinvariant subobject is in fact a subalgebra by the
left comodule version of Proposition 2.2.

Clearly β : A⊗A → A⊗H is left L-colinear if we endow the source with
the codiagonal L-comodule structure. Thus β−1 is also left L-colinear,
and

H

γ

�� ��


	
L A A

=

Hr
β−1

�� ��


	
L A A

=

Hr
��

β−1

L A A

=

H

γr
L A A

so that γ indeed factors through the left coinvariant subobject.

(2) is clear.
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Lemma 3.6. Let A be a faithfully flat right H-Galois object in B. Then the
morphisms

ξ : (A �
H

V )⊗ (A �
H

W ) → A �
H

(V ⊗W )

from Lemma 2.3 are isomorphisms.

Proof. We use the isomorphism

ζ :=
(

A⊗ (A �
H

V )
β�HV−−−−→ A⊗H �

H
V ∼= A⊗ V

)
described graphically by

A Ṽ

ζ

A V

=

A Ṽ

ι
	
A V

and show that

A⊗ (A �H V )⊗ (A �H W )
A⊗ξ //

ζ⊗(A�HW )

��

A⊗A �H (V ⊗W )

ζ

��
A⊗ V ⊗ (A �H W )

τ−1⊗(A�HW )

��

A⊗ V ⊗W

τ−1⊗W

��
V ⊗A⊗ (A �H W )

V⊗ζ // V ⊗A⊗W

commutes:

A Ṽ W̃

ζ

ζ

V A W

=

A Ṽ W̃

ι ι
	

	

V A W

=

A Ṽ W̃

ι ι


	� 
V A W

=

A Ṽ W̃

ξ

ι
	
V A W

=

A Ṽ W̃

ξ

ζ

V A W.

By faithful flatness of A, this proves that ξ is an isomorphism.

The usual definition of a Hopf module can also be given in the braided
setting:

Definition 3.7. A Hopf module M ∈ BH
A for a right H-comodule algebra A is

a right H-comodule and right A-module such that the module structure on M
is an H-comodule morphism with respect to the codiagonal comodule structure
on M ⊗A.
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We will need the structure theorem for Hopf modules:

Proposition 3.8. Assume that A is a flat H-Galois object in B. Then for
every Hopf module in BH

A the morphism

µ0 : M co H ⊗A → M

is an isomorphism. The inverse is determined by commutativity of

M
µ−1

0 //

δ

��

M co H ⊗A

ι⊗A

��

M ⊗H

M⊗γ

��
M ⊗A⊗A

µ⊗A // M ⊗A.

Proof. Let us show first that the morphism

F =
(
M

δ−→ M ⊗H
M⊗γ−−−→ M ⊗A⊗A

µ⊗A−−−→ M ⊗A
)

factors through ι⊗A : M co H ⊗A → M ⊗A. By flatness of A, the latter is the
equalizer of

δ ⊗A,M ⊗ η ⊗A : M ⊗A → M ⊗H ⊗A,

so we have to check (δ ⊗ A)F = (M ⊗ η ⊗ A)F . This is done in the following
calculation:

M
PP

γ

��
PP

M H A

=

M
PP

γ

PP PP

�� 
	
M H A

=

M
PP� ���

γh+
	
��

M H A

=

M
PP

γ

�� r
M H A.

Next, we need to check that the morphism F0 : M → M co H ⊗ A induced by F
is the inverse to µ0. Now

µ0F0 = µF

=
(
M

δ−→ M ⊗H
M⊗γ−−−→ M ⊗A⊗A

µ⊗A−−−→ M ⊗A
µ−→ M

)
=

(
M

δ−→ M ⊗H
M⊗γ−−−→ M ⊗A⊗A

M⊗∇−−−−→ M ⊗A
µ−→ M

)
=

(
M

δ−→ M ⊗H
M⊗ε−−−→ M

M⊗η−−−→ M ⊗A
µ−→ M

)
= idM .
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On the other hand F = FM is clearly natural in M ∈ BH
A , and FV⊗A = V ⊗FA

for V ∈ B. We can read (3.3) as saying FA = η ⊗A, so that

FMµ0 = (µ0 ⊗A)FMco H⊗A = (µ0 ⊗A)(M co H ⊗ FA)

= (µ0 ⊗A)(M co H ⊗ η ⊗A) = ι⊗A,

where ι : M co H → M . Thus F0µ0 is the identity.

Lemma 3.9. If A is a faithfully flat H-Galois object, then for each V ∈ B the
morphism V ⊗ η : V → V ⊗A induces an isomorphism f : V → (V ⊗A)co H .

Proof. It is easy to check that the composition

V ⊗A
f⊗A−−−→ (V ⊗A)co H ⊗A

µ−→ V ⊗A

with the isomorphism from Proposition 3.8 is the identity, hence f ⊗ A is an
isomorphism, and by faithful flatness so is f .

Corollary 3.10. Let A be an H-Galois object in B. Then a right H-module
algebra structure on A is defined by

A H

��

A

=

A H

γ


	� 
A

=

A H

γ


	� 
A.

We call this the Miyashita-Ulbrich action of H on A. With this action, A is a
Yetter-Drinfeld module over H, and it is a commutative algebra in the category
of Yetter-Drinfeld modules over H.

Proof. It should be a standard fact that A is a right Aop ⊗A-module by

A Aop ⊗A

��

A

=

A A A


	� 
A

=

A A A


	� 
A

But by (3.6) and (3.7), γ : H → Aop⊗A is an algebra morphism, so A is a right
H-module as claimed. To see that it is a module algebra, we first observe

H��
γ γ
	

A A A

(3.4)
=

H

γ

PP
γ
	

A A A

(3.1)
=

H

γr
A A A,
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which we use in the following calculation at the step marked (∗):

A A H��
�� ��� 
A

=

A A H��
γ γ


	 
	� � � 
A

=

A A H��
γ γ


	� � � � 
A

=

A A H��
γ γ
	


	� � � 
A

=

(∗)
=

A A A

γr

	� � � 
A

=

A A H

γ


	� � 
A

=

A A H
	
γ


	� 
A

=

A A H
	
��

A.

To see that A is a Yetter-Drinfeld module, we compute

A H��
��
PP


	
A H

=

A H��
γ


	� 
PP


	
A H

=

A H��
γ

� 
PP PP


	
	
� 

A H

=

A H��
γ

PP


	
PP


	
	
� 

A H

=

A H� ���
γ

h+

	
PP


	
	
� 

A H

=

15



=

A H

γ


	
PP
	

A H

=

A H

γ

PP PP


	
	� 
A H

=

A H��
γ

PP


	
	� 
A H

=

A H
PP � �

� 
γ


	� 
A H

=

A H
PP ��
�� 
	

A H.

Finally the calculation

A A
PP

��
	
A

=

A A
PP

γ


	� � 
A

=

A A
PP

γ
	
� � 

A

=

A Ar

	� 

A

=
A A
	
A

shows that A is commutative in the category of Yetter-Drinfeld modules.

So far we have only been dealing with one right H-Galois object A, with
comodule structure δ, Galois morphism β, and its partial inverse γ. When
working with left Galois objects, defined in the obvious way, we will use the
notations δ`, β` and γ` for the left sided analogs of these morphisms. When
there is need to emphasize the comodule algebra A in question, we use δA, βA

and γA, in the left versions δA
` etc.

4 Galois objects are bi-Galois objects

Definition 4.1. An L-H-Bi-Galois object A in B is an algebra A with struc-
tures of a left L-Galois object and a right H-Galois object making it an L-H-
bicomodule algebra.

We denote by BiGal(L,H) the set of isomorphism classes of faithfully flat
L-H-bi-Galois objects.

Lemma 4.2. If A is a faithfully flat L-H-bi-Galois object, then the morphism
γ : H → co L(A⊗A) from Remark 3.5 is an isomorphism.

Proof. The composition

A⊗H
A⊗γ−−−→ A⊗ co L(A⊗A)

µ−→ A⊗A

of A⊗γ with the left version of the isomorphism µ from Proposition 3.8 is β−1,
according to (3.2). In particular, the inverse of A⊗ γ is given by βµ. For later
use we note

ηA ⊗ γ−1 = (A⊗ γ)−1(ηA ⊗ co L(A⊗A)) = βµ(ηA ⊗ co L(A⊗A)) = βι (4.1)
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where ι : co L(A⊗A) → A⊗A is the inclusion

The lemma says that, as an algebra, H is uniquely determined by A as a
left L-Galois object. Vice versa, L is determined by A as a right H-Galois
object, and the lemma recommends L := (A⊗A)co H as a candidate for the
construction of a left L-Galois structure on a given right H-Galois object A.

Theorem 4.3. Let A be a right H-Galois object. Assume that A and L :=
(A⊗A)co H are flat (e.g. assume that A is faithfully flat).

Then L is a Hopf algebra, and A is an L-H-bi-Galois object.

Proof. As a special case of Proposition 2.2, L is a subalgebra of A⊗Aop. From
Proposition 3.8 we know that multiplication on the right tensor factors induces
an isomorphism µ : L ⊗ A → A ⊗ A, whose inverse we denote by β` = µ−1.
By this isomorphism, A faithfully flat implies L flat. Our candidate for a left
L-comodule structure is δ` = β`(A⊗η), for which indeed β` is the corresponding
Galois morphism, so that A is L-Galois. Also, β` and hence δ` are automatically
H-colinear, and A will be an L-H-bicomodule. Let ι : L → A⊗A denote the in-
clusion. From Proposition 3.8 we know that β` is determined by commutativity
of the diagram

A⊗A
β` //

δA⊗A

��

L⊗A

ι⊗A

��

A⊗A⊗H

A⊗A⊗γ

��
A⊗A⊗A⊗A

A⊗∇⊗A // A⊗A⊗A.

From this it is straightforward to deduce

(ι⊗A)δ` =
(
A

δ−→ A⊗H
A⊗γ−−−→ A⊗A⊗A

)
.

In particular δ` is an algebra map since δ and γ are, and A,L are flat; pictorially

A
��

ι

A A A

=

A
PP

γ

A A A.

The bialgebra structure of L will be particularly easy to construct using the
following universal property of L:

Proposition 4.4. Let X be an algebra in B and φ : A → X ⊗ A an algebra
morphism. If X is flat or A is faithfully flat, then there is a unique algebra
morphism f : L → X with φ = (f ⊗A)δ`.
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Proof. Note first that X flat implies (X ⊗A)co H ∼= X. The same is true if A is
faithfully flat, by Lemma 3.9.

We prove uniqueness first: f with the desired properties will make the dia-
gram

A⊗A
β` //

φ⊗A

��

L⊗A

f⊗A

��
X ⊗A⊗A

X⊗∇ // X ⊗A

commute. This determines f , since the tensor factor A can be cancelled by
taking coinvariants.

To prove existence, consider the composition

g :=
(
A⊗A

φ⊗A−−−→ X ⊗A⊗A
X⊗∇−−−→ X ⊗A

)
.

It is a right A-comodule morphism, thus

f :=
(

(A⊗A)co H gco H

−−−→ (X ⊗A)co H ∼= X

)
is well-defined. Note that f is determined by

L

f r
X A

=

L

ι

φ 
	
X A.

It is multiplicative by the calculation

L L� 
f r
X A

=

L L

ι ι


	
	
φ � 

X A

=

L L

ι ι

φ φ 
	
	
	� 
X A

=

L L

ι ι

φ φ 
	
	� � 
X A

=

18



=

L L

ι f

φ r
	
	� 
X A

=

L L

ι f

φ 
	
� 

X A

=

L L

f f
	r
X A

and we omit checking that it is unital. Finally

A
��

f

X A

=

A
��

f r
	
X A

=

A
��

ι

φ 
	� 
X A

=

A
PP

γ

φ 
	� 
X A

=

A
PP r

φ r
	
X A

= φ.

Now we continue the proof of Theorem 4.3. By Proposition 4.4 there is a
unique algebra morphism ∆: L → L ⊗ L with (∆ ⊗ A)δ` = (L ⊗ δ`)δ`, and a
unique algebra morphism ε : L → k with (ε ⊗ A)δ` = idA. Coassociativity can
be deduced from Proposition 4.4 as well, by the somewhat standard calculation

((∆⊗ L)∆⊗A)δ` = (∆⊗ L⊗A)(L⊗ δ`)δ` = (L⊗ L⊗ δ`)(∆⊗A)δ`

= (L⊗ L⊗ δ`)(L⊗ δ`)δ` = (L⊗∆)(L⊗ δ`)δ` = ((L⊗∆)∆⊗A)δ`.

We omit proving the counit property.
To show that L is a Hopf algebra, we vary an unpublished trick of Takeuchi

[10] and show that the diagram

A⊗A⊗A
β`⊗A //

A⊗β`

��

L⊗A⊗A

L⊗β`

��
A⊗ L⊗A

τ⊗A

��

L⊗ L⊗A

L⊗A⊗A
L⊗β`

// L⊗ L⊗A
τ−1⊗A

// L⊗ L⊗A

βL
` ⊗A

OO (4.2)
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commutes, by the calculation

A A A
��� 

��� 
L L A

=

A A A
��

�� ��


	
	� 
L L A

=

A A A
��

���� 
	
	� 
L L A

=

A A A
��
	

��� ��
	
L L A.

It is well-known that βL
` an isomorphism implies that L is a Hopf algebra with

antipode SL = (ε ⊗ L)(βL
` )−1(L ⊗ η). But by the diagram, βL

` ⊗ A is an
isomorphism, and since L ⊗ L is flat, taking coinvariants removes the tensor
factor A.

5 The groupoid of bi-Galois objects

Proposition 5.1. Let H be a flat Hopf algebra and A a flat right H-Galois
object in B. Consider H ⊗ A as an H-H-bicomodule with the codiagonal right
H-comodule structure, and the left comodule structure induced by the left tensor
factor. Put

A−1 := (H ⊗A)co H ⊂ H ⊗Aop,

which is a left H-subcomodule and a subalgebra of H ⊗ Aop. If A is faithfully
flat, then so is A−1. If A−1 is flat, then it is a left H-Galois object in B.

Proof. A−1 is a subalgebra according to Proposition 2.2, and obviously a left H-
subcomodule. To show that A−1 is left H-Galois, we note first that co H

(
A−1

) ∼=(
co H(H ⊗A)

)
co H ∼= Aco H ∼= I using flatness of H to switch the order of taking

left and right coinvariants. To see that the left Galois morphism β
(A−1)
` : A−1⊗

A−1 → H⊗A−1 is an isomorphism, we use the isomorphism µ : A−1⊗A → H⊗A
from Proposition 3.8 and show that the diagram

A−1 ⊗A−1 ⊗A
β

(A−1)
` ⊗A

//

A⊗τ−1

��

H ⊗A−1 ⊗A

H⊗µ

��

A−1 ⊗A⊗A−1

µ⊗A−1

��
H ⊗A⊗A−1

H⊗τ

��

H ⊗H ⊗A

H ⊗A−1 ⊗A
H⊗µ // H ⊗H ⊗A

βH
` ⊗A

OO
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commutes. This is done by the following calculation:

A−1 A−1A

µ

µ

βH
`

H H A

=

A−1 A−1A

ι 
	
ι 
	��
	

H H A

=

A−1 A−1 A

ι��
ι � 
	� 

H H A

=

A−1 A−1A

ι

ι�� 
	
	 � 
H H A

=

=

A−1 A−1 A

ι ι��
	
	� 
H H A

=

A−1 A−1 A
��

ι ι


	
	� 
H H A

=

A−1A−1 A
��� 

ι 
	
H H A

=

A−1 A−1 A

β
(A−1)
`

µ

H H A.

Thus β
(A−1)
` ⊗ A is an isomorphism. But by flatness of A−1 and H, taking

coinvariants will remove the tensor factor A. Note also that faithful flatness of
A implies that of A−1 by the isomorphism µ : A−1 ⊗A ∼= H ⊗A.

Theorem 5.2. The flat Hopf algebras in B are the objects of a groupoid. Mor-
phisms from L to H are the elements of the set BiGal(L,H) of isomorphism
classes of faithfully flat L-H-bi-Galois objects. Composition is given by the
cotensor product.

Proof. Let A ∈ BiGal(L,H) and B ∈ BiGal(H,R) for flat Hopf algebras L,H,R.
Clearly A �H B is an L-R-bicomodule algebra. We will prove that it is right
R-Galois, by factoring the Galois morphism as

(A �H B)⊗ (A �H B)
βA�H B

//

ξ

��

(A �H B)⊗R

A �H (B ⊗B)
A�HβB

33hhhhhhhhhhhhhhhhhh
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by the following calculation (in which we write C = A �H B):

C C

β

ι

A B R

=

C C

ι ι

PP
	
	
A B R

=

C C

ξ

ι

PP
	
A B R

=

C C

ξ

ι

β

A B R.

Similarly A �H B is left L-Galois.
A �H B is faithfully flat by the isomorphism ζ : A ⊗ (A �H B) ∼= A ⊗ B

from the proof of Lemma 3.6
Coassociativity follows from the fact that the objects involved are flat and

equalizers commute with equalizers; thus we have a category of bi-Galois objects
under cotensor product.

Now let A ∈ BiGal(L,H), and consider the left H-Galois object A−1 :=
(H ⊗A)co H as in Proposition 5.1. By the left version of Theorem 4.3, A−1 is
an H-R-bi-Galois object for some Hopf algebra R in B. We have a composed
isomorphism

j =
(

A �
H

A−1 = A �
H

(H ⊗A)co H ∼= (A �
H

H ⊗A)co H ∼= (A⊗A)co H

)
which is given by the restriction of A ⊗ ε ⊗ A : A ⊗ H ⊗ A → A ⊗ A and
hence a left L-colinear algebra map. We can compose this with the inverse of
the left version of the isomorphism γ in Lemma 4.2, to obtain an isomorphism
α : A �H A−1 → L of left L-comodule algebras.

As a consequence, there is a right R-comodule algebra structure ρ on L
making it an L-R-bi-Galois extension. Since ρ is left L-colinear, it has the form
ρ = (L⊗ f)∆ for f = (ε⊗ R)ρ : L → R. Since both ε and ρ are algebra maps,
so is f . Moreover, ρ is a right R-comodule map, hence so is f , whence

∆f = (f ⊗R)ρ = (f ⊗R)(L⊗ f)∆ = (f ⊗ f)∆.

Also εf = (ε ⊗ ε)ρ = ε, so f : L → R is a bialgebra map. Since L is R-Galois,
f is an isomorphism. Thus we can twist the right R-comodule structure of
A−1 back along f−1 to give an H-L-bi-Galois structure on A−1; with this right
L-comodule structure, A �H A−1 ∼= L as bi-Galois objects.

This shows that every bi-Galois object has a right inverse. One may either
prove the existence of left inverses in a similar fashion, or rely on the well-known
fact that proving the existence of all inverses on one side is sufficient.

Corollary 5.3. If all objects of B are flat, then the Hopf algebras in B are the
objects of a groupoid whose morphisms are all bi-Galois objects.
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Proof. We have to make amends at each step of the proof of Theorem 5.2 that
used faithful flatness. The Galois property of A �H B was shown using the
isomorphism ξ, which was proved in Lemma 3.6 under the assumption that A
is faithfully flat. Without that assumption, the proof of Lemma 3.6 shows that
at least A⊗ ξ is an isomorphism. But if all objects are flat, the tensor factor A
can be cancelled by taking, say, left L-coinvariants. We certainly do not need
faithful flatness of A to show A �H B is flat, if we assume that all objects are
flat. Also Proposition 5.1 can be applied without faithful flatness of A, since
A−1 is flat by assumption.

6 The case of bijective antipodes

Proposition 6.1. Let H be a flat Hopf algebra in B, and A a flat right H-Galois
object such that L := (A⊗A)co H is flat.

If the antipode of H is an isomorphism, then so is the antipode of the Hopf
algebra L constructed in Theorem 4.3.

Proof. We return to the proof of Theorem 4.3 and first compute

SL ⊗ ηA = (ε⊗A⊗A)
((

βL
`

)−1 ⊗A
)

(L⊗ ηL ⊗ ηA)

by a chase around the diagram (4.2):

SL ⊗ ηA =

L r r
β−1

`

β−1
`

β`

β`

r
L A

=

L r r
β−1

`

β`


	
L A

=

L

ι

��


	
L A.

From this we conclude

ιSL =

L

ι

��

ι 
	� 
A A

=

L

ι

PP
γ


	� 
A A

=

L

ι

PP

��

A A,

where the right module structure on A is the Miyashita-Ulbrich action. Thus SL

is induced by the braiding on the Yetter-Drinfeld-module A with the Miyashita-
Ulbrich action. Hence SL is an isomorphism, with inverse induced by the inverse
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of the braiding; recall that the braiding is indeed invertible since the antipode
of H is assumed to be an isomorphism.

Proposition 6.2. Let A be a right H-Galois object, and assume the antipode
of H is an isomorphism. Then Aop with the left coaction

δop
` := δ

(Aop)
` :=

A
PP

h−
H A

is a left H-Galois object.

Proof. Aop is a comodule algebra by

A A


	
PP

h−
H A

=

A A

PP PP


	
	
h−

H A

=

A A

PP PP


	h− h−

	

H A

=

A A

PP PP

h− h− 
	

	
H A

=

A A
PP PP

h− h− 
	

	
H A

=

A A
PP PP

h− h−

	
	
H A.

The Galois morphism

βop
` := β

(Aop)
` =

A A
PP

h− 
	
H A

for the left H-comodule algebra Aop is an isomorphism since

A A

βop
` h+

A H

=

A A

PP

h− 
	
h+

A H

=

A A
PP
	

A H

= β

is the Galois morphism for A as a right H-comodule algebra.
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Corollary 6.3 (to the proof). The morphism

γop
` = (βop

` )−1(H ⊗ η)

for the left Galois object Aop is given by

γop
` =

Hh+
γ

A A

Corollary 6.4. Similarly, if A is a left L-Galois object for a Hopf algebra L
whose antipode is an isomorphism, then Aop is a right L-Galois object with
coaction

δop := δ(Aop) :=

A
��

h−
A L

Lemma 6.5. Let H be a Hopf algebra whose antipode is an isomorphism, and
A a right H-Galois object. Then

A
δr−→ A⊗H

τ−1

−−→ H ⊗A
S−1⊗A−−−−−→ H ⊗A

induces a left H-comodule algebra isomorphism Aop → A−1 = (H ⊗A)co H ,
whose inverse is induced by ε⊗A : H ⊗A → A.

Proof. By Lemma 2.4 we have

(H ⊗A)co H = H �
H

Aop ∼= Aop,

and the isomorphism of H �H Aop with Aop obviously has the claimed form.

Theorem 6.6. Let H be a Hopf algebra with bijective antipode, and A ∈
BiGal(L, H). Then A−1 ∼= Aop as H-L-bicomodule algebras, with the left and
right comodule structures on Aop given as in Proposition 6.2 and Corollary 6.4.

Proof. We prove that Aop is a right inverse for A. From Lemma 2.4 we know
that A �H Aop = (A⊗A)co H as an L-L-bicomodule subalgebra of Aop ⊗ A.
And by the left comodule versions of Remark 3.5 and Lemma 4.2, we have an
isomorphism γ` : L → (A⊗A)co H .

7 Ribbon algebras and the Grunspan morphism

The following terminology was recently introduced by Akrami and Majid [1]
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Definition 7.1. A ribbon algebra in B is an algebra A equipped with an algebra
isomorphism A ∼= (Aop)op.

Corollary 7.2. Let A ∈ BiGal(L, H) for flat Hopf algebras L,H ∈ B whose
antipodes are isomorphisms.

Then A is a ribbon algebra. A specific isomorphism ϑ : A → (Aop)op, which
we will call the Grunspan morphism of A, can be given by

ϑ =

A
PP h+

γ


	� 
A

=

A
PP h+
��

A

where the right module structure on A is the Miyashita-Ulbrich action.

Proof. As in any groupoid the inverse of the inverse of the isomorphism class
of A is again the isomorphism class of A. The explicit form of the isomorphism
can be harvested from the standard proof of this fact: We consider the chain of
isomorphisms

ϑ =
(

A ∼= A �
H

H ∼= A �
H

A−1 �
L

(
A−1

)−1 ∼= L �
L

(
A−1

)−1 ∼=
(
A−1

)−1
)

.

Since the isomorphisms H ∼= A−1 �L

(
A−1

)−1 and L ∼= A �H A−1 are induced
by γop

` and γ`, respectively, ϑ satisfies

A
��

γ` ϑ

A A A

=

A
PP

γop
`

A A A

(7.1)

Multiplying the bottom three ends of this equation together, we obtain for the
left hand side

A
��

γ` ϑ
	� 
A

(3.1)
=

A
��r ϑr
	
A

= ϑ,
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and so

ϑ =

A
PP

γop
`
	� 

A

(6.3)
=

A
PP h+

γ


	� 
A

Lemma and Definition 7.3. Let A be a faithfully flat L-H-bi-Galois object
for flat Hopf algebras H,L whose antipodes are isomorphisms. Then

Θ :=

A
PP

γ

A A A

=

A
��

γ`

A A A.

Θ: A → A ⊗ Aop ⊗ A is an algebra morphism that we call the torsor structure
of A.

Proof. Strictly speaking, the equality occurred already in the proof of Theorem
4.3, where ι : (A⊗A)co H → A ⊗ A played the role of γ`. By uniqueness of L
this is enough. We will nevertheless give a quick direct proof by applying β to
the second and third leg:

A
��

γ`

PP
	
A A H

=

A
PP

��
γ` 
	

A A H

(3.3)
=
left

A
PP

r
A A H

(3.1)
=

A
PP

γ

PP
	
A A H.

Since δ and γ are algebra maps, so is Θ.

Lemma 7.4. Let H, L be Hopf algebras whose antipodes are isomorphisms,
and A ∈ BiGal(L,H). The torsor structure of Aop ∈ BiGal(H,L) is

Θ(A−1) = Θop :=

A

Θ

A A A
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Proof.

Θ(A−1) =

A−1

��
γop

`

A A A

=

A
PP

h−h+
γ

A A A

= Θop

Theorem 7.5. Let H and L be flat Hopf algebras whose antipodes are isomor-
phisms.

The torsor structure Θ and the Grunspan morphism ϑ of A ∈ BiGal(L,H)
satisfy:

A

Θ
	
A A

=
A r
A A

and

A

Θ
	
A A

=
Ar

A A

(7.2)

A

Θ

Θ

A A A A A

=

A

Θ

Θ

A A A A A

(7.3)

A

Θ

Θop

A A A A A

=

A

Θ

Θ

ϑ

A A A A A

(7.4)

A

ϑ

Θopop

A A A

=

A

Θ

ϑ ϑ ϑ

A A A

(7.5)

Proof. Note that (7.4) and (7.5) involve a great deal of braiding hidden in the
definition of Θop. We will only prove these two, (7.2) and (7.3) being relatively
easy. As for (7.5), this follows from the fact that ϑ is a morphism of bi-Galois
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objects, and so is compatible with the torsor structures of A and (A−1)−1. But
the latter is Θopop by Lemma 7.4. For (7.4), we note first that

A

Θ

PP

A H A A

=

A

��
γ`

PP

A H A A

=

A

��
γ`

δop
`

A H A A

=

A

Θ

δop
`

A H A A,

where the second equality uses that γ` induces a morphism to A �H Aop, and
then compute

A

Θ

Θ

ϑ

A A A A A

=

A

Θ

��

γ` ϑ

A A A A A

(7.1)
=

A

Θ

PP
γop

`

A A A A A

=

=

A

Θ

δop
`

γop
`

A A A A A

=

A

Θ

Θop

A A A A A
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