CHAPTER 8

Toolbox

9. Adjoint Functors and the Yoneda Lemma

Theorem 8.9.1. (Yoneda Lemma) Let \mathcal{C} be a category. Given a covariant functor $\mathcal{F}: \mathcal{C} \rightarrow$ Set and an object $A \in \mathcal{C}$. Then the map

$$
\pi: \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(A,-), \mathcal{F}\right) \ni \phi \mapsto \phi(A)\left(1_{A}\right) \in \mathcal{F}(A)
$$

is bijective with the inverse map

$$
\pi^{-1}: \mathcal{F}(A) \ni a \mapsto h^{a} \in \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(A,-), \mathcal{F}\right),
$$

where $h^{a}(B)(f)=\mathcal{F}(f)(a)$.
Proof. For $\phi \in \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(A,-), \mathcal{F}\right)$ we have a map $\phi(A): \operatorname{Mor}_{\mathcal{C}}(A, A) \rightarrow \mathcal{F}(A)$, hence π with $\pi(\phi):=\phi(A)\left(1_{A}\right)$ is a well defined map. For π^{-1} we have to check that h^{a} is a natural transformation. Given $f: B \rightarrow C$ in \mathcal{C}. Then the diagram

is commutative. In fact if $g \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ then $h^{a}(C) \operatorname{Mor}_{\mathcal{C}}(A, f)(g)=h^{a}(C)(f g)=$ $\mathcal{F}(f g)(a)=\mathcal{F}(f) \mathcal{F}(g)(a)=\mathcal{F}(f) h^{a}(B)(a)$. Thus π^{-1} is well defined.

Let $\pi^{-1}(a)=h^{a}$. Then $\pi \pi^{-1}(a)=h^{a}(A)\left(1_{A}\right)=\mathcal{F}\left(1_{A}\right)(a)=a$. Let $\pi(\phi)=$ $\phi(A)\left(1_{A}\right)=a$. Then $\pi^{-1} \pi(\phi)=h^{a}$ and $h^{a}(B)(f)=\mathcal{F}(f)(a)=\mathcal{F}(f)\left(\phi(A)\left(1_{A}\right)\right)=$ $\phi(B) \operatorname{Mor}_{\mathcal{C}}(A, f)\left(1_{A}\right)=\phi(B)(f)$, also $h^{a}=\phi$.

Corollary 8.9.2. Given $A, B \in \mathcal{C}$. Then the following hold

1. $\operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \operatorname{Mor}_{\mathcal{C}}(f,-) \in \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(B,-), \operatorname{Mor}_{\mathcal{C}}(A,-)\right)$ is a bijective map.
2. With the bijective map from 1. the isomorphisms from $\operatorname{Mor}_{\mathcal{C}}(A, B)$ correspond to natural isomorphisms from $\operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(B,-), \operatorname{Mor}_{\mathcal{C}}(A,-)\right)$.
3. For contravariant functors $\mathcal{F}: \mathcal{C} \rightarrow$ Set we have $\operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(-, A), \mathcal{F}\right) \cong \mathcal{F}(A)$.
4. $\operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \operatorname{Mor}_{\mathcal{C}}(-, f) \in \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(-, A), \operatorname{Mor}_{\mathcal{C}}(-, B)\right)$ is a bijective map that defines a one-to-one correspondence between the isomorphisms from $\operatorname{Mor}_{\mathcal{C}}(A, B)$

Proof. 1. follows from the Yoneda Lemma with $\mathcal{F}=\operatorname{Mor}_{\mathcal{C}}(A,-)$.
2. Observe that $h^{f}(C)(g)=\operatorname{Mor}_{\mathcal{C}}(A, g)(f)=g f=\operatorname{Mor}_{\mathcal{C}}(f, C)(g)$ hence $h^{f}=$ $\operatorname{Mor}_{\mathcal{C}}(f,-)$. Since we have $\operatorname{Mor}_{\mathcal{C}}(f,-) \operatorname{Mor}_{\mathcal{C}}(g,-)=\operatorname{Mor}_{\mathcal{C}}(g f,-)$ and $\operatorname{Mor}_{\mathcal{C}}(f,-)=\operatorname{id}_{\operatorname{Mor}_{\mathcal{C}}(A,-)}$ if and only if $f=1_{A}$ we get the one-to-one correspondence between the isomorphisms from 1.
3. and 4. follow by dualizing.

Remark 8.9.3. The map π is a natural transformation in the arguments A and \mathcal{F}. More precisely: if $f: A \rightarrow B$ and $\phi: \mathcal{F} \rightarrow \mathcal{G}$ are given then the following diagrams commute

This can be easily checked. Furthermore we have for $\psi: \operatorname{Mor}_{\mathcal{C}}(A,-) \rightarrow \mathcal{F}$

$$
\pi \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(A,-), \phi\right)(\psi)=\pi(\phi \psi)=(\phi \psi)(A)\left(1_{A}\right)=\phi(A) \psi(A)\left(1_{A}\right)=\phi(A) \pi(\psi)
$$

and

$$
\begin{aligned}
& \pi \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(f,-), \mathcal{F}\right)(\psi)=\pi\left(\psi \operatorname{Mor}_{\mathcal{C}}(f,-)\right)=\left(\psi \operatorname{Mor}_{\mathcal{C}}(f,-)\right)(B)\left(1_{B}\right)=\psi(B)(f) \\
& =\psi(B) \operatorname{Mor}_{\mathcal{C}}(A, f)\left(1_{A}\right)=\mathcal{F}(f) \psi(A)\left(1_{A}\right)=\mathcal{F}(f) \pi(\psi)
\end{aligned}
$$

Remark 8.9.4. By the previous corollary the representing object A is uniquely determined up to isomorphism by the isomorphism class of the functor $\operatorname{Mor}_{\mathcal{C}}(A,-)$.

Problem 8.9.1. 1. Determine explicitly all natural endomorphisms from \mathbb{G}_{a} to \mathbb{G}_{a} (as defined in Lemma 2.3.5).
2. Determine all additive natural endomorphisms of \mathbb{G}_{a}.
3. Determine all natural transformations from \mathbb{G}_{a} to \mathbb{G}_{m} (see Lemma 2.3.7).
4. Determine all natural automorphisms of \mathbb{G}_{m}.

Proposition 8.9.5. Let $\mathcal{G}: \mathcal{C} \times \mathcal{D} \rightarrow$ Set be a covariant bifunctor such that the functor $\mathcal{G}(C,-): \mathcal{D} \rightarrow$ Set is representable for all $C \in \mathcal{C}$. Then there exists a contravariant functor $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ such that $\mathcal{G} \cong \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}-,-)$ holds. Furthermore \mathcal{F} is uniquely determined by \mathcal{G} up to isomorphism.

Proof. For each $C \in \mathcal{C}$ choose an object $\mathcal{F}(C) \in \mathcal{D}$ and an isomorphism ξ_{C} : $\mathcal{G}(C,-) \cong \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C),-)$. Given $f: C \rightarrow C^{\prime}$ in \mathcal{C} then let $\mathcal{F}(f): \mathcal{F}\left(C^{\prime}\right) \rightarrow \mathcal{F}(C)$ be the uniquely determined morphism (by the Yoneda Lemma) in \mathcal{D} such that the diagram

commutes. Because of the uniqueness $\mathcal{F}(f)$ and because of the functoriality of \mathcal{G} it is easy to see that $\mathcal{F}(f g)=\mathcal{F}(g) \mathcal{F}(f)$ and $\mathcal{F}\left(1_{C}\right)=1_{\mathcal{F}(C)}$ hold and that \mathcal{F} is a contravariant functor.

If $\mathcal{F}^{\prime}: \mathcal{C} \rightarrow \mathcal{D}$ is given with $\mathcal{G} \cong \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}^{\prime}-,-\right)$ then $\phi: \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}_{-,-}\right) \cong \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}^{\prime}-,-\right)$. Hence by the Yoneda Lemma $\psi(C): \mathcal{F}(C) \cong \mathcal{F}^{\prime}(C)$ is an isomorphism for all $C \in \mathcal{C}$. With these isomorphisms induced by ϕ the diagram

commutes. Hence the diagram

commutes. Thus $\psi: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$ is a natural isomorphism.
Definition 8.9.6. Let \mathcal{C} and \mathcal{D} be categories and $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ and $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ be covariant functors. \mathcal{F} is called leftadjoint to \mathcal{G} and \mathcal{G} rightadjoint to \mathcal{F} if there is a natural isomorphism of bifunctors $\phi: \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}_{-},-\right) \rightarrow \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-)$ from $\mathcal{C}^{\circ p} \times \mathcal{D}$ to Set.

Lemma 8.9.7. If $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ is leftadjoint to $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ then \mathcal{F} is uniquely determined by \mathcal{G} up to isomorphism. Similarly \mathcal{G} is uniquely determined by \mathcal{F} up to isomorphism.

Proof. Now we prove the first claim. Assume that also \mathcal{F}^{\prime} is leftadjoint to \mathcal{G} with $\phi^{\prime}: \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}^{\prime}-,-\right) \rightarrow \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-)$. Then we have a natural isomorphism $\phi^{\phi^{-1}} \phi:$ $\operatorname{Mor}_{\mathcal{D}}(\mathcal{F}-,-) \rightarrow \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}^{\prime}-,-\right)$. By Proposition 8.9.5 we get $\mathcal{F} \cong \mathcal{F}^{\prime}$.

Lemma 8.9.8. A functor $\mathcal{G}: \mathcal{D} \longrightarrow \mathcal{C}$ has a leftadjoint functor iff all functors $\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}$-) are representable.

Proof. follows from 8.9.5.
Lemma 8.9.9. Let $\mathcal{F}: \mathcal{C} \longrightarrow \mathcal{D}$ and $\mathcal{G}: \mathcal{D} \longrightarrow \mathcal{C}$ be covariant functors. Then

$$
\operatorname{Nat}\left(\operatorname{Id}_{\mathcal{C}}, \mathcal{G} \mathcal{F}\right) \ni \Phi \mapsto \mathcal{G}-\Phi-\in \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{D}}(\mathcal{F}-,-), \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-)\right)
$$

is a bijective map with inverse map

$$
\operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}_{-},-\right), \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-)\right) \ni \phi \mapsto \phi\left(-, \mathcal{F}_{-}\right)\left(1_{\mathcal{F}_{-}}\right) \in \operatorname{Nat}\left(\operatorname{Id}_{\mathcal{C}}, \mathcal{G} \mathcal{F}\right)
$$

Furthermore

$$
\operatorname{Nat}\left(\mathcal{F} \mathcal{G}, \operatorname{Id}_{\mathcal{C}}\right) \ni \Psi \mapsto \Psi-\mathcal{F}-\in \operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-), \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}-,-)\right)
$$

is a bijective map with inverse map

$$
\operatorname{Nat}\left(\operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-), \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}_{-},-\right)\right) \ni \psi \mapsto \psi(\mathcal{G}-,-)\left(1_{\mathcal{G}-}\right) \in \operatorname{Nat}\left(\mathcal{F} \mathcal{G}, \operatorname{Id}_{\mathcal{C}}\right)
$$

Proof. The natural transformation \mathcal{G} - Φ - is defined as follows. Given $C \in \mathcal{C}$, $D \in \mathcal{D}$ and $f \in \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), D)$ then let $(\mathcal{G}-\Phi-)(C, D)(f):=\mathcal{G}(f) \Phi(C): C \rightarrow$ $\mathcal{G} \mathcal{F}(C) \rightarrow \mathcal{G}(D)$. It is easy to check the properties of a natural transformation.

Given Φ then one obtains by composition of the two maps $\mathcal{G}\left(1_{\mathcal{F}(C)}\right) \Phi(C)=$ $\mathcal{G} \mathcal{F}\left(1_{C}\right) \Phi(C)=\Phi(C)$. Given ϕ one obtains

$$
\begin{aligned}
& \mathcal{G}(f)\left(\phi(C, \mathcal{F}(C))\left(1_{\mathcal{F}(C)}\right)=\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(f)) \phi(C, \mathcal{F}(C))\left(1_{\mathcal{F}(C)}\right)\right. \\
& =\phi(C, D) \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), f)\left(1_{\mathcal{F}(C)}\right)=\phi(C, D)(f) .
\end{aligned}
$$

The second part of the lemma is proved similarly.
Proposition 8.9.10. Let

$$
\phi: \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}-,-) \rightarrow \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-) \quad \text { and } \quad \psi: \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-) \rightarrow \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}-,-)
$$

be natural transformations with associated natural transformations (by Lemma 8.9.9) $\Phi: \mathrm{Id}_{\mathcal{C}} \rightarrow \mathcal{G} \mathcal{F}$ resp. $\Psi: \mathcal{F} \mathcal{G} \rightarrow \mathrm{Id}_{\mathcal{D}}$.

1) Then we have $\phi \psi=\mathrm{id}_{\operatorname{Mor}\left(-, \mathcal{G}_{-}\right)}$if and only if $(\mathcal{G} \xrightarrow{\Phi \mathcal{G}} \mathcal{G} \mathcal{F} \mathcal{G} \xrightarrow{\mathcal{G} \Psi} \mathcal{G})=\mathrm{id}_{\mathcal{G}}$.
2) We also have $\psi \phi=\operatorname{id}_{\operatorname{Mor}(\mathcal{F}-,-)}$ if and only if $(\mathcal{F} \xrightarrow{\mathcal{F} \Phi} \mathcal{F} \mathcal{G} \mathcal{F} \xrightarrow{\Psi \mathcal{F}} \mathcal{F})=\mathrm{id}_{\mathcal{F}}$.

Proof. We get

$$
\begin{aligned}
& \mathcal{G} \Psi(D) \Phi \mathcal{G}(D)=\mathcal{G} \Psi(D) \phi(\mathcal{G}(D), \mathcal{F} \mathcal{G}(D))\left(1_{\mathcal{F G}(D)}\right) \\
& =\operatorname{Mor}_{\mathcal{C}}(\mathcal{G}(D), \mathcal{G} \Psi(D)) \phi(\mathcal{G}(D), \mathcal{F} \mathcal{G}(D))\left(1_{\mathcal{F G}(D)}\right) \\
& =\phi(\mathcal{G}(D), D) \operatorname{Mor}_{\mathcal{D}}(\mathcal{F} \mathcal{G}(D), \Psi(D))\left(1_{\mathcal{F} \mathcal{G}(D)}\right) \\
& =\phi(\mathcal{G}(D), D)(\Psi(D)) \\
& =\phi(\mathcal{G}(D), D) \psi(\mathcal{G}(D), D)\left(1_{\mathcal{G}(D)}\right) \\
& =\phi \psi(\mathcal{G}(D), D)\left(1_{\mathcal{G}(D)}\right) .
\end{aligned}
$$

Similarly we get

$$
\begin{aligned}
& \phi \psi(C, D)(f)=\phi(C, D) \psi(C, D)(f)=\mathcal{G}(\Psi(D) \mathcal{F}(f)) \Phi(C) \\
& =\mathcal{G} \Psi(D) \mathcal{G} \mathcal{F}(f) \Phi(C)=\mathcal{G} \Psi(D) \Phi \mathcal{G}(D) f .
\end{aligned}
$$

Corollary 8.9.11. Let $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ and $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ be functors. \mathcal{F} is leftadjoint to \mathcal{G} if and only if there are natural transformations $\Phi: \mathrm{Id}_{\mathcal{C}} \rightarrow \mathcal{G} \mathcal{F}$ and $\Psi: \mathcal{F} \mathcal{G} \rightarrow \mathrm{Id}_{\mathcal{D}}$ such that $(\mathcal{G} \Psi)(\Phi \mathcal{G})=\mathrm{id}_{\mathcal{G}}$ and $(\Psi \mathcal{F})(\mathcal{F} \Phi)=\mathrm{id}_{\mathcal{F}}$.

Definition 8.9.12. The natural transformations $\Phi: \mathrm{Id}_{\mathcal{C}} \rightarrow \mathcal{G} \mathcal{F}$ and $\Psi: \mathcal{F \mathcal { G }} \rightarrow$ $\mathrm{Id}_{\mathcal{D}}$ given in 8.9.11 are called unit and counit resp. for the adjoint functors \mathcal{F} and \mathcal{G}.

Problem 8.9.2. 1. Let ${ }_{R} M_{S}$ be a bimodule. Show that the functor $M \otimes_{S}$ - : ${ }_{s} \mathcal{M} \rightarrow{ }_{R} \mathcal{M}$ is leftadjoint to $\operatorname{Hom}_{R}(M,-):{ }_{R} \mathcal{M} \rightarrow{ }_{s} \mathcal{M}$. Determine the associated unit and counit.
b) Show that there is a natural isomorphism $\operatorname{Map}(A \times B, C) \cong \operatorname{Map}(B, \operatorname{Map}(A, C))$. Determine the associated unit and counit.
c) Show that there is a natural isomorphism \mathbb{K} - $\mathbf{A l g}(\mathbb{K} G, A) \cong \operatorname{Gr}(G, U(A))$. Determine the associated unit and counit.
d) Show that there is a natural isomorphism \mathbb{K} - $\mathbf{A} \lg (U(\mathfrak{g}), A) \cong \operatorname{Lie}-\operatorname{Alg}\left(\mathfrak{g}, A^{L}\right)$. Determine the corresponding leftadjoint functor and the associated unit and counit.

Definition 8.9.13. Let $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ be a covariant functor. \mathcal{G} generates a (co)universal problem a follows:

Given $C \in \mathcal{C}$. Find an object $\mathcal{F}(C) \in \mathcal{D}$ and a morphism $\iota: C \rightarrow \mathcal{G}(\mathcal{F}(C))$ in \mathcal{C} such that there is a unique morphism $g: \mathcal{F}(C) \rightarrow D$ in \mathcal{D} for each object $D \in \mathcal{D}$ and for each morphism $f: C \rightarrow \mathcal{G}(D)$ in \mathcal{C} such that the diagram

commutes.
A pair $(\mathcal{F}(C), \iota)$ that satisfies the above conditions is called a universal solution of the (co-) universal problem defined by \mathcal{G} and C.

Let $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ be a covariant functor. \mathcal{F} generates a universal problem a follows:
Given $D \in \mathcal{D}$. Find an object $\mathcal{G}(D) \in \mathcal{C}$ and a morphism $\nu: \mathcal{F}(\mathcal{G}(D)) \rightarrow D$ in \mathcal{D} such that there is a unique morphism $g: C \rightarrow \mathcal{G}(D)$ in \mathcal{C} for each object $C \in \mathcal{C}$ and for each morphism $f: \mathcal{F}(C) \rightarrow D$ in \mathcal{D} such that the diagram

commutes.
A pair $(\mathcal{G}(D), \nu)$ that satisfies the above conditions is called a universal solution of the (co-)universal problem defined by \mathcal{F} and D.

Proposition 8.9.14. Let $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ be leftadjoint to $\mathcal{G}: \mathcal{D} \longrightarrow \mathcal{C}$. Then $\mathcal{F}(C)$ and the unit $\iota=\Phi(C): C \rightarrow \mathcal{G} \mathcal{F}(C)$ form a (co-)universal solution for the (co)universal problem defined by \mathcal{G} and C.

Furthermore $\mathcal{G}(D)$ and the counit $\nu=\Psi(D): \mathcal{F} \mathcal{G}(D) \rightarrow D$ form a universal solution for the universal problem defined by \mathcal{F} and D.

Proof. By Theorem 8.9.10 the morphisms $\phi: \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}_{-},-\right) \rightarrow \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}-)$ and $\psi: \operatorname{Mor}_{\mathcal{C}}\left(-, \mathcal{G}_{-}\right) \rightarrow \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}_{-},-\right)$are inverses of each other. They are defined with unit and counit as $\phi(C, D)(g)=\mathcal{G}(g) \Phi(C)$ resp. $\psi(C, D)(f)=\Psi(D) \mathcal{F}(f)$. Hence for each $f: C \rightarrow \mathcal{G}(D)$ there is a unique $g: \mathcal{F}(C) \rightarrow D$ such that $f=\phi(C, D)(g)=$ $\mathcal{G}(g) \Phi(C)=\mathcal{G}(g) \iota$.

The second statement follows analogously.
Remark 8.9.15. If $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ and $C \in \mathcal{C}$ are given then the (co-)universal solution $(\mathcal{F}(C), \iota: C \rightarrow \mathcal{G}(D))$ can be considered as the best (co-) approximation of the object C in \mathcal{C} by an object D in \mathcal{D} with the help of a functor \mathcal{G}. The object $D \in \mathcal{D}$ turns out to be $\mathcal{F}(C)$.

If $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ and $D \in \mathcal{D}$ are given then the universal solution $(\mathcal{G}(D), \nu:$ $\mathcal{F} \mathcal{G}(D) \rightarrow D)$ can be considered as the best approximation of the object D in \mathcal{D} by an object C in \mathcal{C} with the help of a functor \mathcal{F}. The object $C \in \mathcal{C}$ turns out to be $\mathcal{G}(D)$.

Proposition 8.9.16. Given $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$. Assume that for each $C \in \mathcal{C}$ the universal problem defined by \mathcal{G} and C is solvable. Then there is a leftadjoint functor $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ to \mathcal{G}.

Given $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$. Assume that for each $D \in \mathcal{D}$ the universal problem defined by \mathcal{F} and D is solvable. Then there is a leftadjoint functor $\mathcal{G}: \mathcal{D} \longrightarrow \mathcal{C}$ to \mathcal{F}.

Proof. Assume that the (co-)universal problem defined by \mathcal{G} and C is solved by $\iota: C \rightarrow \mathcal{F}(C)$. Then the map $\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(D)) \ni f \mapsto g \in \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), D)$ with $\mathcal{G}(g) \iota=f$ is bijective. The inverse map is given by $g \mapsto \mathcal{G}(g) \iota$. This is a natural transformation since the diagram

commutes for each $h \in \operatorname{Mor}_{D}\left(D, D^{\prime}\right)$. In fact we have

$$
\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(h))(\mathcal{G}(g) \iota)=\mathcal{G}(h) \mathcal{G}(g) \iota=\mathcal{G}(h g) \iota=\mathcal{G}\left(\operatorname{Mor}_{\mathcal{C}}(\mathcal{F}(C), h)(g)\right) \iota .
$$

Hence for all $C \in \mathcal{C}$ the functor $\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(-)): \mathcal{D} \rightarrow$ Set induced by the bifunctor $\operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}(-)): \mathcal{C}^{o p} \times \mathcal{D} \rightarrow$ Set is representable. By Theorem 8.9.5 there is a functor $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ such that $\operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}(-)) \cong \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(-),-)$.

The second statement follows analogously.
Remark 8.9.17. One can characterize the properties that $\mathcal{G}: \mathcal{D} \rightarrow \mathcal{C}$ (resp. $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D})$ must have in order to possess a left-(right-)adjoint functor. One of the essential properties for this is that \mathcal{G} preserves limits (hence direct products and difference kernels).

