CHAPTER 8

Toolbox

8. TOOLBOX

9. Adjoint Functors and the Yoneda Lemma

Theorem 8.9.1. (Yoneda Lemma) Let C be a category. Given a covariant functor $\mathcal{F}: \mathcal{C} \to \mathbf{Set}$ and an object $A \in \mathcal{C}$. Then the map

$$\pi : \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(A, \operatorname{-}), \mathcal{F}) \ni \phi \mapsto \phi(A)(1_A) \in \mathcal{F}(A)$$

is bijective with the inverse map

$$\pi^{-1}: \mathcal{F}(A) \ni a \mapsto h^a \in \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(A, \operatorname{-}), \mathcal{F}),$$

where $h^{a}(B)(f) = \mathcal{F}(f)(a)$.

PROOF. For $\phi \in \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(A, -), \mathcal{F})$ we have a map $\phi(A) : \operatorname{Mor}_{\mathcal{C}}(A, A) \to \mathcal{F}(A)$, hence π with $\pi(\phi) := \phi(A)(1_A)$ is a well defined map. For π^{-1} we have to check that h^a is a natural transformation. Given $f : B \to C$ in \mathcal{C} . Then the diagram

is commutative. In fact if $g \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ then $h^{a}(C)\operatorname{Mor}_{\mathcal{C}}(A, f)(g) = h^{a}(C)(fg) = \mathcal{F}(fg)(a) = \mathcal{F}(f)\mathcal{F}(g)(a) = \mathcal{F}(f)h^{a}(B)(a)$. Thus π^{-1} is well defined.

Let $\pi^{-1}(a) = h^a$. Then $\pi\pi^{-1}(a) = h^a(A)(1_A) = \mathcal{F}(1_A)(a) = a$. Let $\pi(\phi) = \phi(A)(1_A) = a$. Then $\pi^{-1}\pi(\phi) = h^a$ and $h^a(B)(f) = \mathcal{F}(f)(a) = \mathcal{F}(f)(\phi(A)(1_A)) = \phi(B)\operatorname{Mor}_{\mathcal{C}}(A, f)(1_A) = \phi(B)(f)$, also $h^a = \phi$.

Corollary 8.9.2. Given $A, B \in C$. Then the following hold

1. $\operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \operatorname{Mor}_{\mathcal{C}}(f, -) \in \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(B, -), \operatorname{Mor}_{\mathcal{C}}(A, -))$ is a bijective map.

2. With the bijective map from 1. the isomorphisms from $Mor_{\mathcal{C}}(A, B)$ correspond to natural isomorphisms from $Nat(Mor_{\mathcal{C}}(B, -), Mor_{\mathcal{C}}(A, -))$.

3. For contravariant functors $\mathcal{F} : \mathcal{C} \to \mathbf{Set}$ we have $\operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(-, A), \mathcal{F}) \cong \mathcal{F}(A)$.

4. $\operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \operatorname{Mor}_{\mathcal{C}}(-, f) \in \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(-, A), \operatorname{Mor}_{\mathcal{C}}(-, B))$ is a bijective map that defines a one-to-one correspondence between the isomorphisms from $\operatorname{Mor}_{\mathcal{C}}(A, B)$ and the natural isomorphisms from $\operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(-, A), \operatorname{Mor}_{\mathcal{C}}(-, B))$.

PROOF. 1. follows from the Yoneda Lemma with $\mathcal{F} = \operatorname{Mor}_{\mathcal{C}}(A, -)$.

2. Observe that $h^f(C)(g) = \operatorname{Mor}_{\mathcal{C}}(A,g)(f) = gf = \operatorname{Mor}_{\mathcal{C}}(f,C)(g)$ hence $h^f = \operatorname{Mor}_{\mathcal{C}}(f,-)$. Since we have $\operatorname{Mor}_{\mathcal{C}}(f,-)\operatorname{Mor}_{\mathcal{C}}(g,-) = \operatorname{Mor}_{\mathcal{C}}(gf,-)$ and $\operatorname{Mor}_{\mathcal{C}}(f,-) = \operatorname{id}_{\operatorname{Mor}_{\mathcal{C}}(A,-)}$ if and only if $f = 1_A$ we get the one-to-one correspondence between the isomorphisms from 1.

3. and 4. follow by dualizing.

Remark 8.9.3. The map π is a natural transformation in the arguments A and \mathcal{F} . More precisely: if $f : A \to B$ and $\phi : \mathcal{F} \to \mathcal{G}$ are given then the following diagrams commute

$$\begin{array}{c|c} \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(A, -), \mathcal{F}) & \xrightarrow{\pi} \mathcal{F}(A) \\ \end{array} \\ \begin{array}{c|c} \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(A, -), \mathcal{G}) & \xrightarrow{\pi} \mathcal{G}(A) \\ \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(A, -), \mathcal{F}) & \xrightarrow{\pi} \mathcal{F}(A) \\ \end{array} \\ \end{array} \\ \begin{array}{c|c} \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(A, -), \mathcal{F}) & \xrightarrow{\pi} \mathcal{F}(A) \\ \end{array} \\ \end{array} \\ \begin{array}{c|c} \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(B, -), \mathcal{F}) & \xrightarrow{\pi} \mathcal{F}(B). \end{array} \end{array}$$

This can be easily checked. Furthermore we have for ψ : Mor_{\mathcal{C}} $(A, -) \to \mathcal{F}$

 $\pi \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(A, \operatorname{-}), \phi)(\psi) = \pi(\phi\psi) = (\phi\psi)(A)(1_A) = \phi(A)\psi(A)(1_A) = \phi(A)\pi(\psi)$

and

$$\pi \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(f, -), \mathcal{F})(\psi) = \pi(\psi \operatorname{Mor}_{\mathcal{C}}(f, -)) = (\psi \operatorname{Mor}_{\mathcal{C}}(f, -))(B)(1_B) = \psi(B)(f)$$

= $\psi(B)\operatorname{Mor}_{\mathcal{C}}(A, f)(1_A) = \mathcal{F}(f)\psi(A)(1_A) = \mathcal{F}(f)\pi(\psi).$

Remark 8.9.4. By the previous corollary the representing object A is uniquely determined up to isomorphism by the isomorphism class of the functor $Mor_{\mathcal{C}}(A, -)$.

Problem 8.9.1. 1. Determine explicitly all natural endomorphisms from \mathbb{G}_a to \mathbb{G}_a (as defined in Lemma 2.3.5).

- 2. Determine all additive natural endomorphisms of \mathbb{G}_a .
- 3. Determine all natural transformations from \mathbb{G}_a to \mathbb{G}_m (see Lemma 2.3.7).
- 4. Determine all natural automorphisms of \mathbb{G}_m .

Proposition 8.9.5. Let $\mathcal{G} : \mathcal{C} \times \mathcal{D} \to \mathbf{Set}$ be a covariant bifunctor such that the functor $\mathcal{G}(C, -) : \mathcal{D} \to \mathbf{Set}$ is representable for all $C \in \mathcal{C}$. Then there exists a contravariant functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ such that $\mathcal{G} \cong \mathrm{Mor}_{\mathcal{D}}(\mathcal{F}_{-}, -)$ holds. Furthermore \mathcal{F} is uniquely determined by \mathcal{G} up to isomorphism.

PROOF. For each $C \in \mathcal{C}$ choose an object $\mathcal{F}(C) \in \mathcal{D}$ and an isomorphism $\xi_C : \mathcal{G}(C, -) \cong \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), -)$. Given $f : C \to C'$ in \mathcal{C} then let $\mathcal{F}(f) : \mathcal{F}(C') \to \mathcal{F}(C)$ be the uniquely determined morphism (by the Yoneda Lemma) in \mathcal{D} such that the diagram

$$\begin{array}{c|c} \mathcal{G}(C,-) \xrightarrow{\xi_C} \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C),-) \\ & \downarrow \\ \mathcal{G}(f,-) & \downarrow \\ \mathcal{G}(C',-) \xrightarrow{\xi_{C'}} \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C'),-) \end{array}$$

8. TOOLBOX

commutes. Because of the uniqueness $\mathcal{F}(f)$ and because of the functoriality of \mathcal{G} it is easy to see that $\mathcal{F}(fg) = \mathcal{F}(g)\mathcal{F}(f)$ and $\mathcal{F}(1_C) = 1_{\mathcal{F}(C)}$ hold and that \mathcal{F} is a contravariant functor.

If $\mathcal{F}' : \mathcal{C} \to \mathcal{D}$ is given with $\mathcal{G} \cong \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}', -)$ then $\phi : \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}, -) \cong \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}', -)$. Hence by the Yoneda Lemma $\psi(C) : \mathcal{F}(C) \cong \mathcal{F}'(C)$ is an isomorphism for all $C \in \mathcal{C}$. With these isomorphisms induced by ϕ the diagram

$$\begin{array}{c|c}\operatorname{Mor}_{\mathcal{D}}(\mathcal{F}'(C), \operatorname{-}) & \xrightarrow{\operatorname{Mor}(\psi(C), \operatorname{-})} & \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), \operatorname{-}) \\ & & & & & \\ \operatorname{Mor}(\mathcal{F}'(f), \operatorname{-}) & & & & \\ \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}'(C'), \operatorname{-}) & \xrightarrow{\operatorname{Mor}(\psi(C'), \operatorname{-})} & \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C'), \operatorname{-}) \end{array}$$

commutes. Hence the diagram

commutes. Thus $\psi : \mathcal{F} \to \mathcal{F}'$ is a natural isomorphism.

Definition 8.9.6. Let \mathcal{C} and \mathcal{D} be categories and $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ be covariant functors. \mathcal{F} is called *leftadjoint* to \mathcal{G} and \mathcal{G} rightadjoint to \mathcal{F} if there is a natural isomorphism of bifunctors $\phi : \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}_{-}, -) \to \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}_{-})$ from $\mathcal{C}^{op} \times \mathcal{D}$ to **Set**.

Lemma 8.9.7. If $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ is leftadjoint to $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ then \mathcal{F} is uniquely determined by \mathcal{G} up to isomorphism. Similarly \mathcal{G} is uniquely determined by \mathcal{F} up to isomorphism.

PROOF. Now we prove the first claim. Assume that also \mathcal{F}' is leftadjoint to \mathcal{G} with $\phi' : \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}'_{-}, -) \to \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}_{-})$. Then we have a natural isomorphism $\phi'^{-1}\phi : \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}_{-}, -) \to \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}'_{-}, -)$. By Proposition 8.9.5 we get $\mathcal{F} \cong \mathcal{F}'$.

Lemma 8.9.8. A functor $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ has a leftadjoint functor iff all functors $\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G})$ are representable.

PROOF. follows from 8.9.5.

Lemma 8.9.9. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ be covariant functors. Then

 $\operatorname{Nat}(\operatorname{Id}_{\mathcal{C}}, \mathcal{GF}) \ni \Phi \mapsto \mathcal{G} \cdot \Phi \cdot \in \operatorname{Nat}(\operatorname{Mor}_{\mathcal{D}}(\mathcal{F} \cdot, \cdot), \operatorname{Mor}_{\mathcal{C}}(\cdot, \mathcal{G} \cdot))$

is a bijective map with inverse map

 $\operatorname{Nat}(\operatorname{Mor}_{\mathcal{D}}(\mathcal{F}_{-}, -), \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}_{-})) \ni \phi \mapsto \phi(-, \mathcal{F}_{-})(1_{\mathcal{F}_{-}}) \in \operatorname{Nat}(\operatorname{Id}_{\mathcal{C}}, \mathcal{G}\mathcal{F}).$

42

Furthermore

$$\operatorname{Nat}(\mathcal{FG}, \operatorname{Id}_{\mathcal{C}}) \ni \Psi \mapsto \Psi \operatorname{-} \mathcal{F} \operatorname{-} \in \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(\operatorname{-}, \mathcal{G} \operatorname{-}), \operatorname{Mor}_{\mathcal{D}}(\mathcal{F} \operatorname{-}, \operatorname{-}))$$

is a bijective map with inverse map

$$\operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(\operatorname{\operatorname{\mathsf{-}}}, \operatorname{\mathcal{G}}\operatorname{\operatorname{\mathsf{-}}}), \operatorname{Mor}_{\mathcal{D}}(\operatorname{\operatorname{\mathcal{F}}}\operatorname{\operatorname{\mathsf{-}}}, \operatorname{\operatorname{\mathsf{-}}})) \ni \psi \mapsto \psi(\operatorname{\operatorname{\mathcal{G}}}\operatorname{\operatorname{\mathsf{-}}}, \operatorname{\operatorname{\mathsf{-}}})(1_{\operatorname{\operatorname{\mathcal{G}}}\operatorname{\operatorname{\mathsf{-}}}}) \in \operatorname{Nat}(\operatorname{\operatorname{\mathcal{F}}}\operatorname{\operatorname{\mathcal{G}}}, \operatorname{Id}_{\operatorname{\operatorname{\mathcal{C}}}}).$$

PROOF. The natural transformation \mathcal{G} - Φ - is defined as follows. Given $C \in \mathcal{C}$, $D \in \mathcal{D}$ and $f \in \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), D)$ then let $(\mathcal{G}$ - Φ - $)(C, D)(f) := \mathcal{G}(f)\Phi(C) : C \to \mathcal{GF}(C) \to \mathcal{G}(D)$. It is easy to check the properties of a natural transformation.

Given Φ then one obtains by composition of the two maps $\mathcal{G}(1_{\mathcal{F}(C)})\Phi(C) = \mathcal{GF}(1_C)\Phi(C) = \Phi(C)$. Given ϕ one obtains

$$\mathcal{G}(f)(\phi(C, \mathcal{F}(C))(1_{\mathcal{F}(C)}) = \operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(f))\phi(C, \mathcal{F}(C))(1_{\mathcal{F}(C)}) \\ = \phi(C, D)\operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), f)(1_{\mathcal{F}(C)}) = \phi(C, D)(f).$$

The second part of the lemma is proved similarly.

Proposition 8.9.10. Let

$$\phi: \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}_{-}, -) \to \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}_{-}) \quad and \quad \psi: \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}_{-}) \to \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}_{-}, -)$$

be natural transformations with associated natural transformations (by Lemma 8.9.9) $\Phi : \mathrm{Id}_{\mathcal{C}} \to \mathcal{GF} \text{ resp. } \Psi : \mathcal{FG} \to \mathrm{Id}_{\mathcal{D}}.$

- 1) Then we have $\phi \psi = \mathrm{id}_{\mathrm{Mor}(\neg,\mathcal{G}\neg)}$ if and only if $(\mathcal{G} \xrightarrow{\Phi \mathcal{G}} \mathcal{GFG} \xrightarrow{\mathcal{G}\Psi} \mathcal{G}) = \mathrm{id}_{\mathcal{G}}$.
- 2) We also have $\psi \phi = \operatorname{id}_{\operatorname{Mor}(\mathcal{F}_{-},-)}$ if and only if $(\mathcal{F} \xrightarrow{\mathcal{F}\Phi} \mathcal{F} \mathcal{G} \mathcal{F} \xrightarrow{\Psi \mathcal{F}} \mathcal{F}) = \operatorname{id}_{\mathcal{F}}$.

PROOF. We get

$$\begin{split} \mathcal{G}\Psi(D)\Phi\mathcal{G}(D) &= \mathcal{G}\Psi(D)\phi(\mathcal{G}(D),\mathcal{F}\mathcal{G}(D))(1_{\mathcal{F}\mathcal{G}(D)}) \\ &= \operatorname{Mor}_{\mathcal{C}}(\mathcal{G}(D),\mathcal{G}\Psi(D))\phi(\mathcal{G}(D),\mathcal{F}\mathcal{G}(D))(1_{\mathcal{F}\mathcal{G}(D)}) \\ &= \phi(\mathcal{G}(D),D)\operatorname{Mor}_{\mathcal{D}}(\mathcal{F}\mathcal{G}(D),\Psi(D))(1_{\mathcal{F}\mathcal{G}(D)}) \\ &= \phi(\mathcal{G}(D),D)(\Psi(D)) \\ &= \phi(\mathcal{G}(D),D)\psi(\mathcal{G}(D),D)(1_{\mathcal{G}(D)}) \\ &= \phi\psi(\mathcal{G}(D),D)(1_{\mathcal{G}(D)}). \end{split}$$

Similarly we get

$$\begin{aligned} \phi\psi(C,D)(f) &= \phi(C,D)\psi(C,D)(f) = \mathcal{G}(\Psi(D)\mathcal{F}(f))\Phi(C) \\ &= \mathcal{G}\Psi(D)\mathcal{G}\mathcal{F}(f)\Phi(C) = \mathcal{G}\Psi(D)\Phi\mathcal{G}(D)f. \end{aligned}$$

Corollary 8.9.11. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ be functors. \mathcal{F} is leftadjoint to \mathcal{G} if and only if there are natural transformations $\Phi : \mathrm{Id}_{\mathcal{C}} \to \mathcal{GF}$ and $\Psi : \mathcal{FG} \to \mathrm{Id}_{\mathcal{D}}$ such that $(\mathcal{G}\Psi)(\Phi\mathcal{G}) = \mathrm{id}_{\mathcal{G}}$ and $(\Psi\mathcal{F})(\mathcal{F}\Phi) = \mathrm{id}_{\mathcal{F}}$.

Definition 8.9.12. The natural transformations $\Phi : \mathrm{Id}_{\mathcal{C}} \to \mathcal{GF}$ and $\Psi : \mathcal{FG} \to \mathrm{Id}_{\mathcal{D}}$ given in 8.9.11 are called *unit* and *counit* resp. for the adjoint functors \mathcal{F} and \mathcal{G} .

8. TOOLBOX

Problem 8.9.2. 1. Let $_RM_S$ be a bimodule. Show that the functor $M \otimes_S - : {}_S\mathcal{M} \to {}_R\mathcal{M}$ is leftadjoint to $\operatorname{Hom}_R(M, -) : {}_R\mathcal{M} \to {}_S\mathcal{M}$. Determine the associated unit and counit.

b) Show that there is a natural isomorphism $Map(A \times B, C) \cong Map(B, Map(A, C))$. Determine the associated unit and counit.

c) Show that there is a natural isomorphism \mathbb{K} -Alg $(\mathbb{K}G, A) \cong$ Gr(G, U(A)). Determine the associated unit and counit.

d) Show that there is a natural isomorphism \mathbb{K} -Alg $(U(\mathfrak{g}), A) \cong$ Lie-Alg (\mathfrak{g}, A^L) . Determine the corresponding leftadjoint functor and the associated unit and counit.

Definition 8.9.13. Let $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ be a covariant functor. \mathcal{G} generates a *(co-)universal problem* a follows:

Given $C \in \mathcal{C}$. Find an object $\mathcal{F}(C) \in \mathcal{D}$ and a morphism $\iota : C \to \mathcal{G}(\mathcal{F}(C))$ in \mathcal{C} such that there is a unique morphism $g : \mathcal{F}(C) \to D$ in \mathcal{D} for each object $D \in \mathcal{D}$ and for each morphism $f : C \to \mathcal{G}(D)$ in \mathcal{C} such that the diagram

commutes.

A pair $(\mathcal{F}(C), \iota)$ that satisfies the above conditions is called a *universal solution* of the (co-)universal problem defined by \mathcal{G} and C.

Let $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ be a covariant functor. \mathcal{F} generates a *universal problem* a follows:

Given $D \in \mathcal{D}$. Find an object $\mathcal{G}(D) \in \mathcal{C}$ and a morphism $\nu : \mathcal{F}(\mathcal{G}(D)) \to D$ in \mathcal{D} such that there is a unique morphism $g: C \to \mathcal{G}(D)$ in \mathcal{C} for each object $C \in \mathcal{C}$ and for each morphism $f: \mathcal{F}(C) \to D$ in \mathcal{D} such that the diagram

commutes.

A pair $(\mathcal{G}(D), \nu)$ that satisfies the above conditions is called a *universal solution* of the (co-)universal problem defined by \mathcal{F} and D.

Proposition 8.9.14. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ be leftadjoint to $\mathcal{G} : \mathcal{D} \to \mathcal{C}$. Then $\mathcal{F}(C)$ and the unit $\iota = \Phi(C) : C \to \mathcal{GF}(C)$ form a (co-)universal solution for the (co-)universal problem defined by \mathcal{G} and C.

Furthermore $\mathcal{G}(D)$ and the counit $\nu = \Psi(D) : \mathcal{FG}(D) \to D$ form a universal solution for the universal problem defined by \mathcal{F} and D.

44

PROOF. By Theorem 8.9.10 the morphisms $\phi : \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}_{-}, -) \to \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}_{-})$ and $\psi : \operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}_{-}) \to \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}_{-}, -)$ are inverses of each other. They are defined with unit and counit as $\phi(C, D)(g) = \mathcal{G}(g)\Phi(C)$ resp. $\psi(C, D)(f) = \Psi(D)\mathcal{F}(f)$. Hence for each $f : C \to \mathcal{G}(D)$ there is a unique $g : \mathcal{F}(C) \to D$ such that $f = \phi(C, D)(g) =$ $\mathcal{G}(g)\Phi(C) = \mathcal{G}(g)\iota$.

The second statement follows analogously.

Remark 8.9.15. If $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ and $C \in \mathcal{C}$ are given then the (co-)universal solution $(\mathcal{F}(C), \iota : C \to \mathcal{G}(D))$ can be considered as the best (co-)approximation of the object C in \mathcal{C} by an object D in \mathcal{D} with the help of a functor \mathcal{G} . The object $D \in \mathcal{D}$ turns out to be $\mathcal{F}(C)$.

If $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $D \in \mathcal{D}$ are given then the universal solution $(\mathcal{G}(D), \nu : \mathcal{FG}(D) \to D)$ can be considered as the best approximation of the object D in \mathcal{D} by an object C in \mathcal{C} with the help of a functor \mathcal{F} . The object $C \in \mathcal{C}$ turns out to be $\mathcal{G}(D)$.

Proposition 8.9.16. Given $\mathcal{G} : \mathcal{D} \to \mathcal{C}$. Assume that for each $C \in \mathcal{C}$ the universal problem defined by \mathcal{G} and C is solvable. Then there is a leftadjoint functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ to \mathcal{G} .

Given $\mathcal{F} : \mathcal{C} \to \mathcal{D}$. Assume that for each $D \in \mathcal{D}$ the universal problem defined by \mathcal{F} and D is solvable. Then there is a leftadjoint functor $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ to \mathcal{F} .

PROOF. Assume that the (co-)universal problem defined by \mathcal{G} and C is solved by $\iota: C \to \mathcal{F}(C)$. Then the map $\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(D)) \ni f \mapsto g \in \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), D)$ with $\mathcal{G}(g)\iota = f$ is bijective. The inverse map is given by $g \mapsto \mathcal{G}(g)\iota$. This is a natural transformation since the diagram

$$\begin{array}{c|c} \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), D) & \xrightarrow{\mathcal{G}(\mathsf{-})\iota} & \operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(D)) \\ & & & & & \\ \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), h) & & & & \\ \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(C), D') & \xrightarrow{\mathcal{G}(\mathsf{-})\iota} & \operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(D')) \end{array}$$

commutes for each $h \in Mor_D(D, D')$. In fact we have

 $\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(h))(\mathcal{G}(g)\iota) = \mathcal{G}(h)\mathcal{G}(g)\iota = \mathcal{G}(hg)\iota = \mathcal{G}(\operatorname{Mor}_{\mathcal{C}}(\mathcal{F}(C), h)(g))\iota.$

Hence for all $C \in \mathcal{C}$ the functor $\operatorname{Mor}_{\mathcal{C}}(C, \mathcal{G}(-)) : \mathcal{D} \to \operatorname{\mathbf{Set}}$ induced by the bifunctor $\operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}(-)) : \mathcal{C}^{op} \times \mathcal{D} \to \operatorname{\mathbf{Set}}$ is representable. By Theorem 8.9.5 there is a functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ such that $\operatorname{Mor}_{\mathcal{C}}(-, \mathcal{G}(-)) \cong \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(-), -)$.

The second statement follows analogously.

Remark 8.9.17. One can characterize the properties that $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ (resp. $\mathcal{F} : \mathcal{C} \to \mathcal{D}$) must have in order to possess a left-(right-)adjoint functor. One of the essential properties for this is that \mathcal{G} preserves limits (hence direct products and difference kernels).