CHAPTER 8

Toolbox

8. Representable Functors

Definition 8.8.1. Let $\mathcal{F} : \mathcal{C} \to \mathbf{Set}$ be a covariant functor. A pair (A, x) with $A \in \mathcal{C}, x \in \mathcal{F}(A)$ is called a *representing (generic, universal) object* for \mathcal{F} and \mathcal{F} is called a *representable functor*, if for each $B \in \mathcal{C}$ and $y \in \mathcal{F}(B)$ there exists a unique $f \in \mathrm{Mor}_{\mathcal{C}}(A, B)$ such that $\mathcal{F}(f)(x) = y$:

$$\begin{array}{ccc} A & \mathcal{F}(A) \ni x \\ f & & \mathcal{F}(f) & & \\ B & & \mathcal{F}(B) \ni y \end{array}$$

Proposition 8.8.2. Let (A, x) and (B, y) be representing objects for \mathcal{F} . Then there exists a unique isomorphism $f : A \to B$ such that $\mathcal{F}(f)(x) = y$.

Examples 8.8.3. 1. Let $X \in \mathbf{Set}$ and let R be a ring. $\mathcal{F} : R\operatorname{-Mod} \to \mathbf{Set}$, $\mathcal{F}(M) := \operatorname{Map}(X, M)$ is a covariant functor. A representing object for \mathcal{F} is given by $(RX, x : X \to RX)$ with the property, that for all $(M, y : X \to M)$ there exists a unique $f \in \operatorname{Hom}_R(RX, M)$ such that $\mathcal{F}(f)(x) = \operatorname{Map}(X, f)(x) = fx = y$

2. Given modules M_R and $_RN$. Define $\mathcal{F} : \mathbf{Ab} \to \mathbf{Set}$ by $\mathcal{F}(A) := \operatorname{Bil}_R(M, N; A)$. Then \mathcal{F} is a covariant functor. A representing object for \mathcal{F} is given by $(M \otimes_R N, \otimes : M \times N \to M \otimes_R N)$ with the property that for all $(A, f : M \times N \to A)$ there exists

8. TOOLBOX

a unique $g \in \operatorname{Hom}(M \otimes_R N, A)$ such that $\mathcal{F}(g)(\otimes) = \operatorname{Bil}_R(M, N; g)(\otimes) = g \otimes = f$

3. Given a K-module V. Define $\mathcal{F} : \mathbf{Alg} \to \mathbf{Set}$ by $\mathcal{F}(A) := \mathrm{Hom}(V, A)$. Then \mathcal{F} is a covariant functor. A representing object for \mathcal{F} is given by $(T(V), \iota : V \to T(V))$ with the property that for all $(A, f : V \to A)$ the exists a unique $g \in \mathrm{Mor}_{\mathbf{Alg}}(T(V), A)$ such that $\mathcal{F}(g)(\iota) = \mathrm{Hom}(V, g)(\iota) = g\iota = f$

4. Given a K-module V. Define $\mathcal{F} : \mathbf{cAlg} \to \mathbf{Set}$ by $\mathcal{F}(A) := \operatorname{Hom}(V, A)$. Then \mathcal{F} is a covariant functor. A representing object for \mathcal{F} is given by $(S(V), \iota : V \to S(V))$ with the property that for all $(A, f : V \to A)$ the exists a unique $g \in \operatorname{Mor}_{Alg}(S(V), A)$ such that $\mathcal{F}(g)(\iota) = \operatorname{Hom}(V, g)(\iota) = g\iota = f$

Proposition 8.8.4. \mathcal{F} has a representing object (A, a) if and only if there is a natural isomorphism $\varphi : \mathcal{F} \cong \operatorname{Mor}_{\mathcal{C}}(A, -)$ (with $a = \varphi(A)^{-1}(1_A)$).

PROOF. \implies : The map

$$\varphi(B): \mathcal{F}(B) \ni y \mapsto f \in \operatorname{Mor}_{\mathcal{C}}(A, B) \text{ with } \mathcal{F}(f)(a) = y$$

is bijective with the inverse map

$$\psi(B) : \operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \mathcal{F}(f)(a) \in \mathcal{F}(B).$$

In fact we have $y \mapsto f \mapsto \mathcal{F}(f)(a) = y$ and $f \mapsto y := \mathcal{F}(f)(a) \mapsto g : \mathcal{F}(g)(a) = y = \mathcal{F}(f)(a)$. By uniqueness we get f = g. Hence all $\varphi(B)$ are bijective with inverse map $\psi(B)$. It is sufficient to show that ψ is a natural transformation.

38

Given $q: B \to C$. Then the following diagram commutes

since $\psi(C)\operatorname{Mor}_{\mathcal{C}}(A,g)(f) = \psi(C)(gf) = \mathcal{F}(gf)(a) = \mathcal{F}(g)\mathcal{F}(f)(a) = \mathcal{F}(g)\psi(B)(f).$ $\Leftarrow:$ Let A be given. Let $a := \varphi(A)^{-1}(1_A)$. For $y \in \mathcal{F}(B)$ we get $y = \varphi(B)^{-1}(f) = \varphi(B)^{-1}(f1_A) = \varphi(B)^{-1}\operatorname{Mor}_{\mathcal{C}}(A,f)(1_A) = \mathcal{F}(f)\varphi(A)^{-1}(1_A) = \mathcal{F}(f)(a)$ for a uniquely determined $f \in \operatorname{Mor}_{\mathcal{C}}(A,B)$.

Proposition 8.8.5. Given a representable functor $\mathcal{F}_X : \mathcal{C} \to \mathbf{Set}$ for each $X \in \mathcal{D}$. Given a natural transformation $\mathcal{F}_g : \mathcal{F}_Y \to \mathcal{F}_X$ for each $g : X \to Y$ (contravariant!) such that \mathcal{F} depends functorially on X, i.e. $\mathcal{F}_{1_X} = 1_{\mathcal{F}_X}, \mathcal{F}_{hg} = \mathcal{F}_g \mathcal{F}_h$. Then the representing objects (A_X, a_X) for \mathcal{F}_X depend functorially on X, i.e. for each $g : X \to Y$ there is a unique homomorphism $A_g : A_X \to A_Y$ (with $\mathcal{F}_X(A_g)(a_X) = \mathcal{F}_g(A_Y)(a_Y)$) and the following identities hold $A_{1_X} = 1_{A_X}, A_{hg} = A_h A_g$.

PROOF. Choose a representing object (A_X, a_X) for \mathcal{F}_X for each $X \in \mathcal{C}$ (by the axiom of choice). Then there is a unique homomorphism $A_g : A_X \to A_Y$ with

$$\mathcal{F}_X(A_g)(a_X) = \mathcal{F}_g(A_Y)(a_Y) \in \mathcal{F}_X(A_Y),$$

for each $g: X \to Y$ because $\mathcal{F}_g(A_Y) : \mathcal{F}_Y(A_Y) \to \mathcal{F}_X(A_Y)$ is given. We have $\mathcal{F}_X(A_1)(a_X) = \mathcal{F}_1(A_X)(a_X) = a_X = \mathcal{F}_X(1)(a_X)$ hence $A_1 = 1$, and $\mathcal{F}_X(A_{hg})(a_X) = \mathcal{F}_{hg}(A_Z)(a_Z) = \mathcal{F}_g(A_Z)\mathcal{F}_h(A_Z)(a_Z) = \mathcal{F}_g(A_Z)\mathcal{F}_Y(A_h)(a_Y) = \mathcal{F}_X(A_h)\mathcal{F}_g(A_Y)(a_Y) = \mathcal{F}_X(A_h)\mathcal{F}_X(A_g)(a_X) = \mathcal{F}_X(A_hA_g)(a_X)$ hence $A_hA_g = A_{hg}$ for $g: X \to Y$ and $h: Y \to Z$ in \mathcal{D} .

Corollary 8.8.6. 1. $\operatorname{Map}(X, M) \cong \operatorname{Hom}_R(RX, M)$ is a natural transformation in M (and in X!). In particular Set $\ni X \mapsto RX \in R$ -Mod is a functor.

2. $\operatorname{Bil}_R(M, N; A) \cong \operatorname{Hom}(M \otimes_R N, A)$ is a natural transformation in A (and in $(M, N) \in \operatorname{Mod} R \times R\operatorname{-Mod}$). In particular $\operatorname{Mod} R \times R\operatorname{-Mod} \ni M, N \mapsto M \otimes_r N \in \operatorname{Ab}$ is a functor.

3. R-Mod- $S \times S$ -Mod- $T \ni (M, N) \mapsto M \otimes_S N \in R$ -Mod-T is a functor.