CHAPTER 8

Toolbox

8. TOOLBOX

4. Tensor Products

Definition and Remark 8.4.1. Let M_R and $_RN$ be R-modules, and let A be an abelian group. A map $f: M \times N \to A$ is called R-bilinear if

1. f(m + m', n) = f(m, n) + f(m', n),

2. f(m, n + n') = f(m, n) + f(m, n'),

3. f(mr, n) = f(m, rn)

for all $r \in R$, $m, m' \in M$, $n, n' \in N$.

Let $\operatorname{Bil}_R(M, N; A)$ denote the set of all *R*-bilinear maps $f: M \times N \to A$. $\operatorname{Bil}_R(M, N; A)$ is an abelian group with (f + g)(m, n) := f(m, n) + g(m, n).

Definition 8.4.2. Let M_R and $_RN$ be *R*-modules. An abelian group $M \otimes_R N$ together with an *R*-bilinear map

$$\otimes: M \times N \ni (m, n) \mapsto m \otimes n \in M \otimes_R N$$

is called a *tensor product of* M and N over R if for each abelian group A and for each R-bilinear map $f: M \times N \to A$ there exists a unique group homomorphism $g: M \otimes_R N \to A$ such that the diagram

commutes. The elements of $M \otimes_R N$ are called *tensors*, the elements of the form $m \otimes n$ are called *decomposable tensors*.

Warning: If you want to define a homomorphism $f: M \otimes_R N \to A$ with a tensor product as domain you *must* define it by giving an *R*-bilinear map defined on $M \times N$.

Lemma 8.4.3. A tensor product $(M \otimes_R N, \otimes)$ defined by M_R and $_RN$ is unique up to a unique isomorphism.

PROOF. Let $(M \otimes_R N, \otimes)$ and $(M \boxtimes_R N, \boxtimes)$ be tensor products. Then

implies $k = h^{-1}$.

Because of this fact we will henceforth talk about the tensor product of M and N over R.

Proposition 8.4.4. (Rules of computation in a tensor product) Let $(M \otimes_R N, \otimes)$ be the tensor product. Then we have for all $r \in R$, $m, m' \in M$, $n, n' \in N$

- 1. $M \otimes_R N = \{\sum_i m_i \otimes n_i \mid m_i \in M, n_i \in N\},\$
- 2. $(m+m') \otimes n = m \otimes n + m' \otimes n$,
- 3. $m \otimes (n + n') = m \otimes n + m \otimes n'$,
- 4. $mr \otimes n = m \otimes rn$ (observe in particular, that $\otimes : M \times N \to M \otimes N$ is not injective in general),
- 5. if $f: M \times N \to A$ is an R-bilinear map and $g: M \otimes_R N \to A$ is the induced homomorphism, then

$$g(m \otimes n) = f(m, n).$$

PROOF. 1. Let $B := \langle m \otimes n \rangle \subseteq M \otimes_R N$ denote the subgroup of $M \otimes_R N$ generated by the decomposable tensors $m \otimes n$. Let $j : B \to M \otimes_R N$ be the embedding homomorphism. We get an induced map $\otimes' : M \times N \to B$. In the following diagram

we have $\operatorname{id}_B \circ \otimes' = \otimes'$, p with $p \circ j \circ \otimes' = p \circ \otimes = \otimes'$ exists since \otimes' is R-bilinear. Because of $jp \circ \otimes = j \circ \otimes' = \otimes = \operatorname{id}_{M \otimes_R N} \circ \otimes$ we get $jp = \operatorname{id}_{M \otimes_R N}$, hence the embedding j is surjective and thus the identity.

2. $(m+m') \otimes n = \otimes (m+m',n) = \otimes (m,n) + \otimes (m',n) = m \otimes n + m' \otimes n$.

- 3. and 4. analogously.
- 5. is precisely the definition of the induced homomorphism.

Remark 8.4.5. To construct tensor products, we use the notion of a free module.

Let X be a set and R be a ring. An R-module RX together with a map $\iota: X \to RX$ is called a *free* R-module generated by X, if for every R-module M and for every map $f: X \to M$ there exists a unique homomorphism of R-modules $g: RX \to M$ such that the diagram

commutes.

Free *R*-modules exist and can be constructed as $RX := \{\alpha : X \to R | \text{ for almost} all x \in X : \alpha(x) = 0 \}.$

Proposition 8.4.6. Given R-modules M_R and $_RN$. Then there exists a tensor product $(M \otimes_R N, \otimes)$.

PROOF. Define $M \otimes_R N := \mathbb{Z}\{M \times N\}/U$ where $\mathbb{Z}\{M \times N\}$ is a free \mathbb{Z} -module over $M \times N$ (the free abelian group) and U is generated by

8. TOOLBOX

$$\iota(m+m',n) - \iota(m,n) - \iota(m',n)$$

$$\iota(m,m+n') - \iota(m,n) - \iota(m,n')$$

$$\iota(mr,n) - \iota(m,rn)$$

for all $r \in R, m, m' \in M, n, n' \in N$. Consider

Let ψ be given. Then there is a unique $\rho \in \operatorname{Hom}(\mathbb{Z}\{M \times N\}, A)$ such that $\rho \iota = \psi$. Since ψ is *R*-bilinear we get $\rho(\iota(m + m', n) - \iota(m, n) - \iota(m'n)) = \psi(m + m', n) - \psi(m, n) - \psi(m', n) = 0$ and similarly $\rho(\iota(m, n + n') - \iota(m, n) - \iota(m, n')) = 0$ and $\rho(\iota(mr, n) - \iota(m, rn)) = 0$. So we get $\rho(U) = 0$. This implies that there is a unique $g \in \operatorname{Hom}(M \otimes_R N, A)$ such that $g\nu = \rho$ (homomorphism theorem). Let $\otimes := \nu \circ \iota$. Then \otimes is bilinear since $(m + m') \otimes n = \nu \circ \iota(m + m', n) = \nu(\iota(m + m', n)) = \nu(\iota(m + m', n) - \iota(m, n) - \iota(m', n) + \iota(m, n) + \iota(m', n)) = \nu(\iota(m, n) + \iota(m', n)) = \nu \circ \iota(m, n) + \nu \circ \iota(m', n) = m \otimes n + m' \otimes n$. The other two properties are obtained in an analogous way.

We have to show that $(M \otimes_R N, \otimes)$ is a tensor product. The above diagram shows that for each abelian group A and for each R-bilinear map $\psi : M \times N \to A$ there is a $g \in \operatorname{Hom}(M \otimes_R N, A)$ such that $g \circ \otimes = \psi$. Given $h \in \operatorname{Hom}(M \otimes_R N, A)$ with $h \circ \otimes = \psi$. Then $h \circ \nu \circ \iota = \psi$. This implies $h \circ \nu = \rho = g \circ \nu$ hence g = h. \Box

Proposition and Definition 8.4.7. Given two homomorphisms

 $f \in \operatorname{Hom}_{R}(M, M')$ and $g \in \operatorname{Hom}_{R}(N, N')$.

Then there is a unique homomorphism

 $f \otimes_R g \in \operatorname{Hom}(M \otimes_R N, M' \otimes_R N')$

such that $f \otimes_R g(m \otimes n) = f(m) \otimes g(n)$, i.e. the following diagram commutes

$$\begin{array}{c|c} M \times N \xrightarrow{\otimes} M \otimes_R N \\ f \times g \\ M' \times N' \xrightarrow{\otimes} M' \otimes_R N' \end{array}$$

PROOF. $\otimes \circ (f \times g)$ is bilinear.

Notation 8.4.8. We often write $f \otimes_R N := f \otimes_R 1_N$ and $M \otimes_R g := 1_M \otimes_R g$. We have the following rule of computation:

$$f \otimes_R g = (f \otimes_R N') \circ (M \otimes_R g) = (M' \otimes_R g) \circ (f \otimes_R N)$$

since $f \times g = (f \times N') \circ (M \times g) = (M' \times g) \circ (f \times N)$.

12

Proposition 8.4.9. The following define covariant functors

1. $-\otimes N$: **Mod**- $R \rightarrow \mathbf{Ab}$; 2. $M \otimes -: R$ -**Mod** $\rightarrow \mathbf{Ab}$; 3. $-\otimes -: \mathbf{Mod} \cdot R \times R$ -**Mod** $\rightarrow \mathbf{Ab}$.

PROOF. $(f \times g) \circ (f' \times g') = ff' \times gg'$ implies $(f \otimes_R g) \circ (f' \otimes_R g') = ff' \times gg'$. Furthermore $1_M \times 1_N = 1_{M \times N}$ implies $1_M \otimes_R 1_N = 1_{M \otimes_R N}$.

Definition 8.4.10. Let R, S be rings and let M be a left R-module and a right S-module. M is called an R-S-bimodule if (rm)s = r(ms). We define $\operatorname{Hom}_{R-S}(.M.,.N.)$:= $\operatorname{Hom}_R(.M,.N) \cap \operatorname{Hom}_S(M.,N.)$.

Remark 8.4.11. Let M_S be a right S-module and let $R \times M \to M$ a map. M is an R-S-bimodule if and only if

1. $\forall r \in R : (M \ni m \mapsto rm \in M) \in \operatorname{Hom}_{S}(M, M),$ 2. $\forall r, r' \in R, m \in M : (r + r')m = rm + r'm,$ 3. $\forall r, r' \in R, m \in M : (rr')m = r(r'm),$ 4. $\forall m \in M : 1m = m.$

Lemma 8.4.12. Let $_RM_S$ and $_SN_T$ be bimodules. Then $_R(M \otimes_S N)_T$ is a bimodule by $r(m \otimes n) := rm \otimes n$ and $(m \otimes n)t := m \otimes nt$.

PROOF. Obviously we have 2.-4. Furthermore $(r \otimes_S id)(m \otimes n) = rm \otimes n = r(m \otimes n)$ is a homomorphism.

Corollary 8.4.13. Given bimodules $_RM_S$, $_SN_T$, $_RM'_S$, $_SN'_T$ and homomorphisms $f \in \operatorname{Hom}_{R-S}(.M., .M'.)$ and $g \in \operatorname{Hom}_{S-T}(.N., .N'.)$. Then we have $f \otimes_S g \in \operatorname{Hom}_{R-T}(.M \otimes_S N., .M' \otimes_S N'.)$.

PROOF.
$$f \otimes_S g(rm \otimes nt) = f(rm) \otimes g(nt) = r(f \otimes_S g)(m \otimes n)t.$$

Remark 8.4.14. Every module M over a commutative ring \mathbb{K} and in particular every vector space over a field \mathbb{K} is a \mathbb{K} - \mathbb{K} -bimodule by $\lambda m = m\lambda$. So there is an embedding functor $\iota : \mathbb{K}$ - $\mathbf{Mod} \to \mathbb{K}$ - \mathbf{Mod} - \mathbb{K} . Observe that there are \mathbb{K} - \mathbb{K} -bimodules that do not satisfy $\lambda m = m\lambda$. Take for example an automorphism $\alpha : \mathbb{K} \to \mathbb{K}$ and a left \mathbb{K} -module M and define $m\lambda := \alpha(\lambda)m$. Then M is such a \mathbb{K} - \mathbb{K} -bimodule.

The tensor product $M \otimes_{\mathbb{K}} N$ of two K-K-bimodules M and N is again a K-Kbimodule. If we have, however, K-K-bimodules M and N arising from K-modules as above, i.e. satisfying $\lambda m = m\lambda$, then their tensor product $M \otimes_{\mathbb{K}} N$ also satisfies this equation, so $M \otimes_{\mathbb{K}} N$ comes from a module in K-Mod. Indeed we have $\lambda m \otimes n =$ $m\lambda \otimes n = m \otimes \lambda n = m \otimes n\lambda$. Thus the following diagram of functors commutes:

8. TOOLBOX

So we can consider \mathbb{K} -Mod as a (proper) subcategory of \mathbb{K} -Mod- \mathbb{K} . The tensor product over \mathbb{K} can be restricted to \mathbb{K} -Mod.

We write the tensor product of two vector spaces M and N as $M \otimes N$.

Theorem 8.4.15. In the category K-Mod there are natural isomorphisms

- 1. Associativity Law: $\alpha : (M \otimes N) \otimes P \cong M \otimes (N \otimes P)$.
- 2. Law of the Left Unit: $\lambda : \mathbb{K} \otimes M \cong M$.
- 3. Law of the Right Unit: $\rho: M \otimes \mathbb{K} \cong M$.
- 4. Symmetry Law: $\tau : M \otimes N \cong N \otimes M$.
- 5. Existence of Inner Hom-Functors: $\operatorname{Hom}(P \otimes M, N) \cong \operatorname{Hom}(P, \operatorname{Hom}(M, N)).$

PROOF. We only describe the corresponding homomorphisms.

- 1. Use (8.4.45.) to define $\alpha((m \otimes n) \otimes p) := m \otimes (n \otimes p)$.
- 2. Define $\lambda : \mathbb{K} \otimes M \to M$ by $\lambda(r \otimes m) := rm$.
- 3. Define $\rho: M \otimes \mathbb{K} \to M$ by $\rho(m \otimes r) := mr$.
- 4. Define $\tau(m \otimes n) := n \otimes m$.

5. For $f : P \otimes M \to N$ define $\phi(f) : P \to \operatorname{Hom}(M, N)$ by $\phi(f)(p)(m) := f(p \otimes m)$.

Usually one identifies threefold tensor products along the map α so that we use $M \otimes N \otimes P = (M \otimes N) \otimes P = M \otimes (N \otimes P)$. For the notion of a monoidal or tensor category, however, this natural transformation is of central importance.

Problem 8.4.1. 1. Give an explicit proof of $M \otimes (X \oplus Y) \cong M \otimes X \oplus M \otimes Y$. 2. Show that for every finite dimensional vector space V there is a unique element $\sum_{i=1}^{n} v_i \otimes v_i^* \in V \otimes V^*$ such that the following holds

$$\forall v \in V : \quad \sum_{i} v_i^*(v) v_i = v.$$

(Hint: Use an isomorphism $\operatorname{End}(V) \cong V \otimes V^*$ and dual bases $\{v_i\}$ of V and $\{v_i^*\}$ of V^* .)

3. Show that the following diagrams (coherence diagrams or constraints) commute in \mathbb{K} -Mod:

14

4. Write $\tau(A, B) : A \otimes B \to B \otimes A$ for $\tau(A, B) : a \otimes b \mapsto b \otimes a$. Show that τ is a natural transformation (between which functors?). Show that

commutes for all $A, B, C \in \mathbb{K}$ -Mod and that

$$\tau(B,A)\tau(A,B) = \mathrm{id}_{A\otimes B}$$

for all A, B in \mathbb{K} -Mod.

5. Find an example of $M, N \in \mathbb{K}$ -**Mod**- \mathbb{K} such that $M \otimes_{\mathbb{K}} N \not\cong N \otimes_{\mathbb{K}} M$.