
CHAPTER 8

Toolbox

9
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4. Tensor Products

De�nition and Remark 8.4.1. Let MR and RN be R-modules, and let A be
an abelian group. A map f :M �N �! A is called R-bilinear if

1. f(m+m0; n) = f(m;n) + f(m0; n);
2. f(m;n+ n0) = f(m;n) + f(m;n0);
3. f(mr; n) = f(m; rn)

for all r 2 R; m;m0 2M; n; n0 2 N .
Let BilR(M;N ;A) denote the set of all R-bilinear maps f :M �N �! A.
BilR(M;N ;A) is an abelian group with (f + g)(m;n) := f(m;n) + g(m;n).

De�nition 8.4.2. Let MR and RN be R-modules. An abelian group M 
R N
together with an R-bilinear map


 :M �N 3 (m;n) 7! m
 n 2M 
R N

is called a tensor product of M and N over R if for each abelian group A and for
each R-bilinear map f : M � N �! A there exists a unique group homomorphism
g :M 
R N �! A such that the diagram

M �N M 
R N-


f
@
@
@
@@R

A
?

g

commutes. The elements of M 
R N are called tensors, the elements of the form
m
 n are called decomposable tensors.

Warning: If you want to de�ne a homomorphism f :M 
RN �! A with a tensor
product as domain you must de�ne it by giving an R-bilinear map de�ned onM �N .

Lemma 8.4.3. A tensor product (M 
R N;
) de�ned by MR and RN is unique
up to a unique isomorphism.

Proof. Let (M 
R N;
) and (M �R N;�) be tensor products. Then

M �N




����������

�

�
�

�
��	



@
@
@
@@R

�

HHHHHHHHHj
M 
R N M �R N-h -k M 
R N M �R N-h

implies k = h�1.

Because of this fact we will henceforth talk about the tensor product of M and N
over R.

Proposition 8.4.4. (Rules of computation in a tensor product) Let (M
RN;
)
be the tensor product. Then we have for all r 2 R, m;m0 2M , n; n0 2 N
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1. M 
R N = f
P

imi 
 ni j mi 2M;ni 2 Ng;
2. (m+m0)
 n = m
 n+m0 
 n;
3. m
 (n+ n0) = m
 n+m
 n0;
4. mr 
 n = m 
 rn (observe in particular, that 
 : M � N �! M 
 N is not

injective in general),
5. if f :M �N �! A is an R-bilinear map and g :M 
R N �! A is the induced

homomorphism, then
g(m
 n) = f(m;n):

Proof. 1. Let B := hm 
 ni � M 
R N denote the subgroup of M 
R N
generated by the decomposable tensors m
n. Let j : B �!M
RN be the embedding
homomorphism. We get an induced map 
0 :M �N �! B. In the following diagram

M �N B-

0

M 
R N-j

B M 
R N-j


0

@
@
@
@@R ?

idB

?

jpp
�
�
�
��	

we have idB �
0 = 
0, p with p � j � 
0 = p � 
 = 
0 exists since 
0 is R-bilinear.
Because of jp � 
 = j � 
0 = 
 = idM
RN �
 we get jp = idM
RN , hence the
embedding j is surjective and thus the identity.

2. (m+m0)
 n = 
(m+m0; n) = 
(m;n) +
(m0; n) = m
 n+m0 
 n.
3. and 4. analogously.
5. is precisely the de�nition of the induced homomorphism.

Remark 8.4.5. To construct tensor products, we use the notion of a free module.
Let X be a set and R be a ring. An R-module RX together with a map � : X �!

RX is called a free R-module generated by X, if for every R-module M and for every
map f : X �! M there exists a unique homomorphism of R-modules g : RX �! M
such that the diagram

X RX-�

f
@
@
@
@@R
M
?

g

commutes.
Free R-modules exist and can be constructed as RX := f� : X �! Rj for almost

all x 2 X : �(x) = 0g.

Proposition 8.4.6. Given R-modules MR and RN . Then there exists a tensor
product (M 
R N;
).

Proof. De�ne M 
R N := ZfM �Ng=U where ZfM �Ng is a free Z-module
over M �N (the free abelian group) and U is generated by
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�(m+m0; n)� �(m;n)� �(m0; n)
�(m;m+ n0)� �(m;n)� �(m;n0)
�(mr; n)� �(m; rn)

for all r 2 R, m;m0 2 M , n; n0 2 N . Consider

M �N ZfM �Ng-� M 
R N-� =ZfM �Ng=U

A

 

PPPPPPPPPPPPPq

�

Q
Q
Q
Q
Q
QQs ?

g

Let  be given. Then there is a unique � 2 Hom(ZfM � Ng; A) such that �� =  .
Since  is R-bilinear we get �(�(m + m0; n) � �(m;n) � �(m0n)) =  (m + m0; n) �
 (m;n) �  (m0; n) = 0 and similarly �(�(m;n + n0) � �(m;n) � �(m;n0)) = 0 and
�(�(mr; n)� �(m; rn)) = 0. So we get �(U) = 0. This implies that there is a unique
g 2 Hom(M 
R N;A) such that g� = � (homomorphism theorem). Let 
 := � � �.
Then 
 is bilinear since (m + m0) 
 n = � � �(m + m0; n) = �(�(m + m0; n)) =
�(�(m + m0; n) � �(m;n) � �(m0; n) + �(m;n) + �(m0; n)) = �(�(m;n) + �(m0; n)) =
� � �(m;n) + � � �(m0; n) = m
 n+m0
 n. The other two properties are obtained in
an analogous way.

We have to show that (M
RN;
) is a tensor product. The above diagram shows
that for each abelian group A and for each R-bilinear map  : M � N �! A there
is a g 2 Hom(M 
R N;A) such that g � 
 =  . Given h 2 Hom(M 
R N;A) with
h � 
 =  . Then h � � � � =  . This implies h � � = � = g � � hence g = h.

Proposition and De�nition 8.4.7. Given two homomorphisms

f 2 HomR(M:;M 0:) and g 2 HomR(:N; :N
0):

Then there is a unique homomorphism

f 
R g 2 Hom(M 
R N;M
0 
R N

0)

such that f 
R g(m
 n) = f(m)
 g(n), i.e. the following diagram commutes

M 0 �N 0 M 0 
R N
0-




M �N M 
R N-


?

f � g

?

f 
R g

Proof. 
 � (f � g) is bilinear.

Notation 8.4.8. We often write f 
R N := f 
R 1N and M 
R g := 1M 
R g.
We have the following rule of computation:

f 
R g = (f 
R N
0) � (M 
R g) = (M 0 
R g) � (f 
R N)

since f � g = (f �N 0) � (M � g) = (M 0 � g) � (f �N).
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Proposition 8.4.9. The following de�ne covariant functors

1. - 
N :Mod-R �! Ab;
2. M 
 - : R-Mod �! Ab;
3. - 
 - :Mod-R�R-Mod �! Ab.

Proof. (f � g) � (f 0 � g0) = ff 0 � gg0 implies (f 
R g) � (f 0 
R g
0) = ff 0 � gg0.

Furthermore 1M � 1N = 1M�N implies 1M 
R 1N = 1M
RN .

De�nition 8.4.10. Let R, S be rings and letM be a leftR-module and a right S-
module. M is called an R-S-bimodule if (rm)s = r(ms). We de�ne HomR-S(:M:; :N:)
:= HomR(:M; :N) \HomS(M:;N:).

Remark 8.4.11. Let MS be a right S-module and let R �M �!M a map. M
is an R-S-bimodule if and only if

1. 8r 2 R : (M 3 m 7! rm 2M) 2 HomS(M:;M:),
2. 8r; r0 2 R;m 2M : (r + r0)m = rm+ r0m,
3. 8r; r0 2 R;m 2M : (rr0)m = r(r0m),
4. 8m 2M : 1m = m:

Lemma 8.4.12. Let RMS and SNT be bimodules. Then R(M
SN)T is a bimodule
by r(m
 n) := rm
 n and (m
 n)t := m
 nt.

Proof. Obviously we have 2.-4. Furthermore (r 
S id)(m 
 n) = rm 
 n =
r(m
 n) is a homomorphism.

Corollary 8.4.13. Given bimodules RMS , SNT , RM 0

S , SN
0

T and homomorphisms
f 2 HomR-S(:M:; :M 0:) and g 2 HomS-T (:N:; :N 0:). Then we have f 
S g 2 HomR-T
(:M 
S N:; :M

0 
S N
0:):

Proof. f 
S g(rm
 nt) = f(rm) 
 g(nt) = r(f 
S g)(m
 n)t:

Remark 8.4.14. Every module M over a commutative ring K and in particular
every vector space over a �eld K is a K-K -bimodule by �m = m�. So there is an
embedding functor � : K-Mod �! K-Mod-K. Observe that there are K-K -bimodules
that do not satisfy �m = m�. Take for example an automorphism � : K �! K and a
left K-module M and de�ne m� := �(�)m. Then M is such a K-K -bimodule.

The tensor product M 
K N of two K-K -bimodules M and N is again a K-K -
bimodule. If we have, however, K-K -bimodules M and N arising from K-modules as
above, i.e. satisfying �m = m�, then their tensor product M 
KN also satis�es this
equation, so M 
K N comes from a module in K-Mod. Indeed we have �m 
 n =
m�
 n = m
 �n = m
 n�. Thus the following diagram of functors commutes:

K-Mod K-Mod-K:-
�

K-Mod� K-Mod K-Mod-K � K-Mod-K-�� �

?


K

?


K
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So we can consider K-Mod as a (proper) subcategory of K-Mod-K. The tensor
product over K can be restricted to K-Mod.

We write the tensor product of two vector spaces M and N as M 
N .

Theorem 8.4.15. In the category K-Mod there are natural isomorphisms

1. Associativity Law: � : (M 
N)
 P �=M 
 (N 
 P ).
2. Law of the Left Unit: � : K 
M �=M .
3. Law of the Right Unit: � :M 
 K �=M .
4. Symmetry Law: � :M 
N �= N 
M .
5. Existence of Inner Hom-Functors: Hom(P 
M;N) �= Hom(P;Hom(M;N)).

Proof. We only describe the corresponding homomorphisms.
1. Use (8.4.45.) to de�ne �((m
 n)
 p) := m
 (n
 p).
2. De�ne � : K 
M �!M by �(r 
m) := rm.
3. De�ne � :M 
 K �!M by �(m
 r) := mr.
4. De�ne � (m
 n) := n
m.
5. For f : P 
 M �! N de�ne �(f) : P �! Hom(M;N) by �(f)(p)(m) :=

f(p 
m).

Usually one identi�es threefold tensor products along the map � so that we use
M 
N 
P = (M 
N)
P =M 
 (N 
P ). For the notion of a monoidal or tensor
category, however, this natural transformation is of central importance.

Problem 8.4.1. 1. Give an explicit proof of M 
 (X � Y ) �=M 
X �M 
 Y .
2. Show that for every �nite dimensional vector space V there is a unique elementPn

i=1 vi 
 v�i 2 V 
 V � such that the following holds

8v 2 V :
X

i

v�i (v)vi = v:

(Hint: Use an isomorphism End(V ) �= V 
 V � and dual bases fvig of V and fv�i g of
V �.)

3. Show that the following diagrams (coherence diagrams or constraints) commute
in K-Mod:

((A
B)
 C)
D (A
 (B 
C))
D-�(A;B;C)
1
A
 ((B 
 C)
D)-�(A;B
C;D)

?
�(A
B;C;D)

?
1
�(B;C;D)

(A
B)
 (C 
D) A
 (B 
 (C 
D))-�(A;B;C
D)

(A
 K) 
B A
 (K 
B)-�(A;K;B)

A
B

�(A)
1

Q
Q
Q
QQs

1
�(B)

�
�
�
��+
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4. Write � (A;B) : A
B �! B 
A for � (A;B) : a
 b 7! b
 a. Show that � is a
natural transformation (between which functors?). Show that

(A
B)
 C (B 
A)
 C-�(X;B)
1
B 
 (A
 C)-�

?

�

?

1
�(A;C)

A
 (B 
 C) (B 
 C)
A-�(A;B
C)
B 
 (C 
A)-�

commutes for all A;B;C 2 K-Mod and that

� (B;A)� (A;B) = idA
B

for all A, B in K-Mod.
5. Find an example of M , N 2 K-Mod-K such that M 
K N 6�= N 
KM .


