CHAPTER 8

Toolbox

4. Tensor Products

Definition and Remark 8.4.1. Let M_{R} and ${ }_{R} N$ be R-modules, and let A be an abelian group. A map $f: M \times N \rightarrow A$ is called R-bilinear if

1. $f\left(m+m^{\prime}, n\right)=f(m, n)+f\left(m^{\prime}, n\right)$,
2. $f\left(m, n+n^{\prime}\right)=f(m, n)+f\left(m, n^{\prime}\right)$,
3. $f(m r, n)=f(m, r n)$
for all $r \in R, m, m^{\prime} \in M, n, n^{\prime} \in N$.
Let $\operatorname{Bil}_{R}(M, N ; A)$ denote the set of all R-bilinear maps $f: M \times N \rightarrow A$.
$\operatorname{Bil}_{R}(M, N ; A)$ is an abelian group with $(f+g)(m, n):=f(m, n)+g(m, n)$.
Definition 8.4.2. Let M_{R} and ${ }_{R} N$ be R-modules. An abelian group $M \otimes_{R} N$ together with an R-bilinear map

$$
\otimes: M \times N \ni(m, n) \mapsto m \otimes n \in M \otimes_{R} N
$$

is called a tensor product of M and N over R if for each abelian group A and for each R-bilinear map $f: M \times N \rightarrow A$ there exists a unique group homomorphism $g: M \otimes_{R} N \rightarrow A$ such that the diagram

commutes. The elements of $M \otimes_{R} N$ are called tensors, the elements of the form $m \otimes n$ are called decomposable tensors.

Warning: If you want to define a homomorphism $f: M \otimes_{R} N \rightarrow A$ with a tensor product as domain you must define it by giving an R-bilinear map defined on $M \times N$.

Lemma 8.4.3. A tensor product $\left(M \otimes_{R} N, \otimes\right)$ defined by M_{R} and ${ }_{R} N$ is unique up to a unique isomorphism.

Proof. Let $\left(M \otimes_{R} N, \otimes\right)$ and $\left(M \boxtimes_{R} N, \boxtimes\right)$ be tensor products. Then

implies $k=h^{-1}$.
Because of this fact we will henceforth talk about the tensor product of M and N over R.

Proposition 8.4.4. (Rules of computation in a tensor product) Let ($M \otimes_{R} N, \otimes$) be the tensor product. Then we have for all $r \in R, m, m^{\prime} \in M, n, n^{\prime} \in N$

1. $M \otimes_{R} N=\left\{\sum_{i} m_{i} \otimes n_{i} \mid m_{i} \in M, n_{i} \in N\right\}$,
2. $\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n$,
3. $m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime}$,
4. $m r \otimes n=m \otimes r n$ (observe in particular, that $\otimes: M \times N \rightarrow M \otimes N$ is not injective in general),
5. if $f: M \times N \rightarrow A$ is an R-bilinear map and $g: M \otimes_{R} N \rightarrow A$ is the induced homomorphism, then

$$
g(m \otimes n)=f(m, n) .
$$

Proof. 1. Let $B:=\langle m \otimes n\rangle \subseteq M \otimes_{R} N$ denote the subgroup of $M \otimes_{R} N$ generated by the decomposable tensors $m \otimes n$. Let $j: B \rightarrow M \otimes_{R} N$ be the embedding homomorphism. We get an induced map $\otimes^{\prime}: M \times N \rightarrow B$. In the following diagram

we have $\mathrm{id}_{B} \circ \otimes^{\prime}=\otimes^{\prime}$, p with $p \circ j \circ \otimes^{\prime}=p \circ \otimes=\otimes^{\prime}$ exists since \otimes^{\prime} is R-bilinear. Because of $j p \circ \otimes=j \circ \otimes^{\prime}=\otimes=\operatorname{id}_{M \otimes_{R} N} \circ \otimes$ we get $j p=\mathrm{id}_{M \otimes_{R^{\prime}} N}$, hence the embedding j is surjective and thus the identity.
2. $\left(m+m^{\prime}\right) \otimes n=\otimes\left(m+m^{\prime}, n\right)=\otimes(m, n)+\otimes\left(m^{\prime}, n\right)=m \otimes n+m^{\prime} \otimes n$.
3. and 4. analogously.
5. is precisely the definition of the induced homomorphism.

Remark 8.4.5. To construct tensor products, we use the notion of a free module.
Let X be a set and R be a ring. An R-module $R X$ together with a map $\iota: X \rightarrow$ $R X$ is called a free R-module generated by X, if for every R-module M and for every map $f: X \rightarrow M$ there exists a unique homomorphism of R-modules $g: R X \rightarrow M$ such that the diagram

commutes.
Free R-modules exist and can be constructed as $R X:=\{\alpha: X \rightarrow R \mid$ for almost all $x \in X: \alpha(x)=0\}$.

Proposition 8.4.6. Given R-modules M_{R} and ${ }_{R} N$. Then there exists a tensor product $\left(M \otimes_{R} N, \otimes\right)$.

Proof. Define $M \otimes_{R} N:=\mathbb{Z}\{M \times N\} / U$ where $\mathbb{Z}\{M \times N\}$ is a free \mathbb{Z}-module over $M \times N$ (the free abelian group) and U is generated by

$$
\begin{aligned}
& \iota\left(m+m^{\prime}, n\right)-\iota(m, n)-\iota\left(m^{\prime}, n\right) \\
& \iota\left(m, m+n^{\prime}\right)-\iota(m, n)-\iota\left(m, n^{\prime}\right) \\
& \iota(m r, n)-\iota(m, r n)
\end{aligned}
$$

for all $r \in R, m, m^{\prime} \in M, n, n^{\prime} \in N$. Consider

Let ψ be given. Then there is a unique $\rho \in \operatorname{Hom}(\mathbb{Z}\{M \times N\}, A)$ such that $\rho \iota=\psi$. Since ψ is R-bilinear we get $\rho\left(\iota\left(m+m^{\prime}, n\right)-\iota(m, n)-\iota\left(m^{\prime} n\right)\right)=\psi\left(m+m^{\prime}, n\right)-$ $\psi(m, n)-\psi\left(m^{\prime}, n\right)=0$ and similarly $\rho\left(\iota\left(m, n+n^{\prime}\right)-\iota(m, n)-\iota\left(m, n^{\prime}\right)\right)=0$ and $\rho(\iota(m r, n)-\iota(m, r n))=0$. So we get $\rho(U)=0$. This implies that there is a unique $g \in \operatorname{Hom}\left(M \otimes_{R} N, A\right)$ such that $g \nu=\rho$ (homomorphism theorem). Let $\otimes:=\nu \circ \iota$. Then \otimes is bilinear since $\left(m+m^{\prime}\right) \otimes n=\nu \circ \iota\left(m+m^{\prime}, n\right)=\nu\left(\iota\left(m+m^{\prime}, n\right)\right)=$ $\nu\left(\iota\left(m+m^{\prime}, n\right)-\iota(m, n)-\iota\left(m^{\prime}, n\right)+\iota(m, n)+\iota\left(m^{\prime}, n\right)\right)=\nu\left(\iota(m, n)+\iota\left(m^{\prime}, n\right)\right)=$ $\nu \circ \iota(m, n)+\nu \circ \iota\left(m^{\prime}, n\right)=m \otimes n+m^{\prime} \otimes n$. The other two properties are obtained in an analogous way.

We have to show that $\left(M \otimes_{R} N, \otimes\right)$ is a tensor product. The above diagram shows that for each abelian group A and for each R-bilinear map $\psi: M \times N \rightarrow A$ there is a $g \in \operatorname{Hom}\left(M \otimes_{R} N, A\right)$ such that $g \circ \otimes=\psi$. Given $h \in \operatorname{Hom}\left(M \otimes_{R} N, A\right)$ with $h \circ \otimes=\psi$. Then $h \circ \nu \circ \iota=\psi$. This implies $h \circ \nu=\rho=g \circ \nu$ hence $g=h$.

Proposition and Definition 8.4.7. Given two homomorphisms

$$
f \in \operatorname{Hom}_{R}\left(M ., M^{\prime} .\right) \text { and } g \in \operatorname{Hom}_{R}\left(. N, . N^{\prime}\right) .
$$

Then there is a unique homomorphism

$$
f \otimes_{R} g \in \operatorname{Hom}\left(M \otimes_{R} N, M^{\prime} \otimes_{R} N^{\prime}\right)
$$

such that $f \otimes_{R} g(m \otimes n)=f(m) \otimes g(n)$, i.e. the following diagram commutes

Proof. $\otimes \circ(f \times g)$ is bilinear.
Notation 8.4.8. We often write $f \otimes_{R} N:=f \otimes_{R} 1_{N}$ and $M \otimes_{R} g:=1_{M} \otimes_{R} g$. We have the following rule of computation:

$$
f \otimes_{R} g=\left(f \otimes_{R} N^{\prime}\right) \circ\left(M \otimes_{R} g\right)=\left(M^{\prime} \otimes_{R} g\right) \circ\left(f \otimes_{R} N\right)
$$

since $f \times g=\left(f \times N^{\prime}\right) \circ(M \times g)=\left(M^{\prime} \times g\right) \circ(f \times N)$.

Proposition 8.4.9. The following define covariant functors

1. $-\otimes N: \mathbf{M o d}-R \rightarrow \mathbf{A b}$;
2. $M \otimes-: R$-Mod $\rightarrow \mathbf{A b}$;
3. $-\otimes-: \operatorname{Mod}-R \times R$-Mod $\rightarrow \mathbf{A b}$.

Proof. $(f \times g) \circ\left(f^{\prime} \times g^{\prime}\right)=f f^{\prime} \times g g^{\prime} \operatorname{implies}\left(f \otimes_{R} g\right) \circ\left(f^{\prime} \otimes_{R} g^{\prime}\right)=f f^{\prime} \times g g^{\prime}$. Furthermore $1_{M} \times 1_{N}=1_{M \times N}$ implies $1_{M} \otimes_{R} 1_{N}=1_{M \otimes_{R} N}$.

Definition 8.4.10. Let R, S be rings and let M be a left R-module and a right S module. M is called an R-S-bimodule if $(r m) s=r(m s)$. We define $\operatorname{Hom}_{R-S}(. M ., . N$. $:=\operatorname{Hom}_{R}(. M, . N) \cap \operatorname{Hom}_{S}(M ., N$.$) .$

Remark 8.4.11. Let M_{S} be a right S-module and let $R \times M \rightarrow M$ a map. M is an R-S-bimodule if and only if

1. $\forall r \in R:(M \ni m \mapsto r m \in M) \in \operatorname{Hom}_{S}(M ., M$.$) ,$
2. $\forall r, r^{\prime} \in R, m \in M:\left(r+r^{\prime}\right) m=r m+r^{\prime} m$,
3. $\forall r, r^{\prime} \in R, m \in M:\left(r r^{\prime}\right) m=r\left(r^{\prime} m\right)$,
4. $\forall m \in M: 1 m=m$.

Lemma 8.4.12. Let ${ }_{R} M_{S}$ and $S_{S} N_{T}$ be bimodules. Then ${ }_{R}\left(M \otimes_{S} N\right)_{T}$ is a bimodule by $r(m \otimes n):=r m \otimes n$ and $(m \otimes n) t:=m \otimes n t$.

Proof. Obviously we have 2.-4. Furthermore $\left(r \otimes_{S} \mathrm{id}\right)(m \otimes n)=r m \otimes n=$ $r(m \otimes n)$ is a homomorphism.

Corollary 8.4.13. Given bimodules ${ }_{R} M_{S},{ }_{S} N_{T},{ }_{R} M_{S}^{\prime},{ }_{S} N_{T}^{\prime}$ and homomorphisms $f \in \operatorname{Hom}_{R-S}\left(. M ., . M^{\prime}.\right)$ and $g \in \operatorname{Hom}_{S-T}\left(. N ., . N^{\prime}.\right)$. Then we have $f \otimes_{S} g \in \operatorname{Hom}_{R-T}$ $\left(. M \otimes_{S} N ., . M^{\prime} \otimes_{S} N^{\prime}.\right)$.

Proof. $f \otimes_{S} g(r m \otimes n t)=f(r m) \otimes g(n t)=r\left(f \otimes_{S} g\right)(m \otimes n) t$.
Remark 8.4.14. Every module M over a commutative ring \mathbb{K} and in particular every vector space over a field \mathbb{K} is a \mathbb{K} - \mathbb{K}-bimodule by $\lambda m=m \lambda$. So there is an embedding functor $\iota: \mathbb{K}$-Mod $\rightarrow \mathbb{K}$-Mod- \mathbb{K}. Observe that there are \mathbb{K} - \mathbb{K}-bimodules that do not satisfy $\lambda m=m \lambda$. Take for example an automorphism $\alpha: \mathbb{K} \rightarrow \mathbb{K}$ and a left \mathbb{K}-module M and define $m \lambda:=\alpha(\lambda) m$. Then M is such a \mathbb{K} - \mathbb{K}-bimodule.

The tensor product $M \otimes_{\mathbb{K}} N$ of two \mathbb{K} - \mathbb{K}-bimodules M and N is again a \mathbb{K} - \mathbb{K} bimodule. If we have, however, \mathbb{K} - \mathbb{K}-bimodules M and N arising from \mathbb{K}-modules as above, i.e. satisfying $\lambda m=m \lambda$, then their tensor product $M \otimes_{\mathbb{K}} N$ also satisfies this equation, so $M \otimes_{\mathbb{K}} N$ comes from a module in \mathbb{K}-Mod. Indeed we have $\lambda m \otimes n=$ $m \lambda \otimes n=m \otimes \lambda n=m \otimes n \lambda$. Thus the following diagram of functors commutes:

So we can consider \mathbb{K}-Mod as a (proper) subcategory of \mathbb{K}-Mod- \mathbb{K}. The tensor product over \mathbb{K} can be restricted to \mathbb{K}-Mod.

We write the tensor product of two vector spaces M and N as $M \otimes N$.
Theorem 8.4.15. In the category \mathbb{K}-Mod there are natural isomorphisms

1. Associativity Law: $\alpha:(M \otimes N) \otimes P \cong M \otimes(N \otimes P)$.
2. Law of the Left Unit: $\lambda: \mathbb{K} \otimes M \cong M$.
3. Law of the Right Unit: $\rho: M \otimes \mathbb{K} \cong M$.
4. Symmetry Law: $\tau: M \otimes N \cong N \otimes M$.
5. Existence of Inner Hom-Functors: $\operatorname{Hom}(P \otimes M, N) \cong \operatorname{Hom}(P, \operatorname{Hom}(M, N))$.

Proof. We only describe the corresponding homomorphisms.

1. Use (8.4.45.) to define $\alpha((m \otimes n) \otimes p):=m \otimes(n \otimes p)$.
2. Define $\lambda: \mathbb{K} \otimes M \rightarrow M$ by $\lambda(r \otimes m):=r m$.
3. Define $\rho: M \otimes \mathbb{K} \rightarrow M$ by $\rho(m \otimes r):=m r$.
4. Define $\tau(m \otimes n):=n \otimes m$.
5. For $f: P \otimes M \rightarrow N$ define $\phi(f): P \rightarrow \operatorname{Hom}(M, N)$ by $\phi(f)(p)(m):=$ $f(p \otimes m)$.

Usually one identifies threefold tensor products along the map α so that we use $M \otimes N \otimes P=(M \otimes N) \otimes P=M \otimes(N \otimes P)$. For the notion of a monoidal or tensor category, however, this natural transformation is of central importance.

Problem 8.4.1. 1. Give an explicit proof of $M \otimes(X \oplus Y) \cong M \otimes X \oplus M \otimes Y$.
2. Show that for every finite dimensional vector space V there is a unique element $\sum_{i=1}^{n} v_{i} \otimes v_{i}^{*} \in V \otimes V^{*}$ such that the following holds

$$
\forall v \in V: \quad \sum_{i} v_{i}^{*}(v) v_{i}=v .
$$

(Hint: Use an isomorphism $\operatorname{End}(V) \cong V \otimes V^{*}$ and dual bases $\left\{v_{i}\right\}$ of V and $\left\{v_{i}^{*}\right\}$ of V^{*}.)
3. Show that the following diagrams (coherence diagrams or constraints) commute in \mathbb{K}-Mod:

4. Write $\tau(A, B): A \otimes B \rightarrow B \otimes A$ for $\tau(A, B): a \otimes b \mapsto b \otimes a$. Show that τ is a natural transformation (between which functors?). Show that

commutes for all $A, B, C \in \mathbb{K}$ - Mod and that

$$
\tau(B, A) \tau(A, B)=\mathrm{id}_{A \otimes B}
$$

for all A, B in \mathbb{K}-Mod.
5. Find an example of $M, N \in \mathbb{K}$ - Mod- \mathbb{K} such that $M \otimes_{\mathbb{K}} N \neq N \otimes_{\mathbb{K}} M$.

