CHAPTER 8

Toolbox

2. Functors

Definition 8.2.1. Let \mathcal{C} and \mathcal{D} be categories. Let \mathcal{F} consist of

1. a map $\mathrm{Ob} \mathcal{C} \ni A \mapsto \mathcal{F}(A) \in \mathrm{Ob} \mathcal{D}$,
2. a family of maps

$$
\begin{gathered}
\left\{\mathcal{F}_{A, B}: \operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \mathcal{F}_{A, B}(f) \in \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(A), \mathcal{F}(B)) \mid A, B \in \mathcal{C}\right\} \\
{\left[\operatorname{or}\left\{\mathcal{F}_{A, B}: \operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \mathcal{F}_{A, B}(f) \in \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(B), \mathcal{F}(A)) \mid A, B \in \mathcal{C}\right\}\right]}
\end{gathered}
$$

\mathcal{F} is called a covariant [contravariant] functor if

1. $\mathcal{F}_{A, A}\left(1_{A}\right)=1_{\mathcal{F}(A)}$ for all $A \in \mathrm{Ob} \mathcal{C}$,
2. $\mathcal{F}_{A, C}(g f)=\mathcal{F}_{B, C}(g) \mathcal{F}_{A, B}(f)$ for all $A, B, C \in \mathrm{Ob} \mathcal{C}$.
$\left[\mathcal{F}_{A, C}(g f)=\mathcal{F}_{A, B}(f) \mathcal{F}_{B, C}(g)\right.$ for all $\left.A, B, C \in \mathrm{Ob} \mathcal{C}\right]$.
Notation: We write

$$
\begin{array}{ccc}
A \in \mathcal{C} & \text { instead of } & A \in \operatorname{Ob\mathcal {C}} \\
f \in \mathcal{C} & \text { instead of } & f \in \operatorname{Mor}_{\mathcal{C}}(A, B) \\
\mathcal{F}(f) & \text { instead of } & \mathcal{F}_{A, B}(f)
\end{array}
$$

Examples 8.2.2. 1. Id : Set \rightarrow Set

2. Forget : R-Mod \rightarrow Set
3. Forget : $\mathrm{Ri} \rightarrow \mathbf{A b}$
4. Forget : $\mathbf{A b} \rightarrow \mathbf{G r}$
5. $\mathcal{P}:$ Set \rightarrow Set, $\mathcal{P}(M):=$ power set of $M . \mathcal{P}(f)(X):=f^{-1}(X)$ for $f: M \rightarrow$ $N, X \subseteq N$ is a contravariant functor.
6. $\mathcal{Q}:$ Set \rightarrow Set, $\mathcal{Q}(M):=$ power set of $M . \mathcal{Q}(f)(X):=f(X)$ for $f: M \rightarrow$ $N, X \subseteq M$ is a covariant functor.

Lemma 8.2.3. 1. Let $X \in \mathcal{C}$. Then

$$
\operatorname{ObC} \ni A \mapsto \operatorname{Mor}_{\mathcal{C}}(X, A) \in \operatorname{ObSet}
$$

$\operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \operatorname{Mor}_{\mathcal{C}}(X, f) \in \operatorname{Mor}_{\text {Set }}\left(\operatorname{Mor}_{\mathcal{C}}(X, A), \operatorname{Mor}_{C}(X, B)\right)$,
with $\operatorname{Mor}_{C}(X, f): \operatorname{Mor}_{C}(X, A) \ni g \mapsto f g \in \operatorname{Mor}_{C}(X, B)$ or $\operatorname{Mor}_{C}(X, f)(g)=$ $f g$ is a covariant functor $\operatorname{Mor}_{C}(X,-)$.
2. Let $X \in C$. Then

$$
\operatorname{ObC} \ni A \mapsto \operatorname{Mor}_{\mathcal{C}}(A, X) \in \operatorname{ObSet}
$$

$\operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \operatorname{Mor}_{\mathcal{C}}(f, X) \in \operatorname{Mor}_{\operatorname{set}}\left(\operatorname{Mor}_{\mathcal{C}}(B, X), \operatorname{Mor}_{\mathcal{C}}(A, X)\right)$
with $\operatorname{Mor}_{\mathcal{C}}(f, X): \operatorname{Mor}_{\mathcal{C}}(B, X) \ni g \mapsto g f \in \operatorname{Mor}_{\mathcal{C}}(A, X)$ or $\operatorname{Mor}_{\mathcal{C}}(f, X)(g)=g f$ is a contravariant functor $\operatorname{Mor}_{\mathcal{C}}(-, X)$.

Proof. 1. $\operatorname{Mor}_{\mathcal{C}}\left(X, 1_{A}\right)(g)=1_{A} g=g=\operatorname{id}(g), \operatorname{Mor}_{C}(X, f) \operatorname{Mor}_{C}(X, g)(h)=$ $f g h=\operatorname{Mor}_{C}(X, f g)(h)$.
2. analogously.

Remark 8.2.4. The preceding lemma shows that $\operatorname{Mor}_{\mathcal{C}}(-,-)$ is a functor in both arguments. A functor in two arguments is called a bifunctor. We can regards the bifunctor $\operatorname{Mor}_{\mathcal{C}}(-,-)$ as a covariant functor

$$
\operatorname{Mor}_{\mathcal{C}}(-,-): \mathcal{C}^{o p} \times \mathcal{C} \rightarrow \text { Set. }
$$

The use of the dual category removes the fact that the bifunctor $\operatorname{Mor}_{\mathcal{C}}(-,-)$ is contravariant in the first variable.

Obviously the composition of two functors is again a functor and this composition is associative. Furthermore for each category \mathcal{C} there is an identity functor $\mathrm{Id}_{\mathcal{C}}$.

Functors of the form $\operatorname{Mor}_{\mathcal{C}}(X,-)$ resp. $\operatorname{Mor}_{\mathcal{C}}(-, X)$ are called representable functors (covariant resp. contravariant) and X is called the representing object (see also section 8.8).

