CHAPTER 8

Toolbox

2. FUNCTORS

2. Functors

Definition 8.2.1. Let \mathcal{C} and \mathcal{D} be categories. Let \mathcal{F} consist of

1. a map $\operatorname{Ob} \mathcal{C} \ni A \mapsto \mathcal{F}(A) \in \operatorname{Ob} \mathcal{D}$,

2. a family of maps

$$\{\mathcal{F}_{A,B}: \operatorname{Mor}_{\mathcal{C}}(A,B) \ni f \mapsto \mathcal{F}_{A,B}(f) \in \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(A),\mathcal{F}(B)) | A, B \in \mathcal{C}\}$$

$$\left[\text{or } \{ \mathcal{F}_{A,B} : \text{Mor}_{\mathcal{C}}(A,B) \ni f \mapsto \mathcal{F}_{A,B}(f) \in \text{Mor}_{\mathcal{D}}(\mathcal{F}(B),\mathcal{F}(A)) | A, B \in \mathcal{C} \} \right]$$

 \mathcal{F} is called a *covariant* [contravariant] functor if

1. $\mathcal{F}_{A,A}(1_A) = 1_{\mathcal{F}(A)}$ for all $A \in \operatorname{Ob} \mathcal{C}$, 2. $\mathcal{F}_{A,C}(gf) = \mathcal{F}_{B,C}(g)\mathcal{F}_{A,B}(f)$ for all $A, B, C \in \operatorname{Ob} \mathcal{C}$. $[\mathcal{F}_{A,C}(gf) = \mathcal{F}_{A,B}(f)\mathcal{F}_{B,C}(g)$ for all $A, B, C \in \operatorname{Ob} \mathcal{C}]$.

Notation: We write

$$\begin{array}{ll} A \in \mathcal{C} & \text{instead of} & A \in \operatorname{Ob} \mathcal{C} \\ f \in \mathcal{C} & \text{instead of} & f \in \operatorname{Mor}_{\mathcal{C}}(A, B) \\ \mathcal{F}(f) & \text{instead of} & \mathcal{F}_{A,B}(f). \end{array}$$

Examples 8.2.2. 1. Id : Set \rightarrow Set

- 2. Forget : R-Mod \rightarrow Set
- 3. Forget : $\mathbf{Ri} \to \mathbf{Ab}$
- 4. Forget : $Ab \rightarrow Gr$
- 5. $\mathcal{P} : \mathbf{Set} \to \mathbf{Set}, \mathcal{P}(M) := \text{power set of } M. \ \mathcal{P}(f)(X) := f^{-1}(X) \text{ for } f : M \to N, X \subseteq N \text{ is a contravariant functor.}$
- 6. $\mathcal{Q} : \mathbf{Set} \to \mathbf{Set}, \mathcal{Q}(M) := \text{power set of } M. \quad \mathcal{Q}(f)(X) := f(X) \text{ for } f : M \to N, X \subseteq M \text{ is a covariant functor.}$

Lemma 8.2.3. 1. Let $X \in \mathcal{C}$. Then

$$\operatorname{Ob} \mathcal{C} \ni A \mapsto \operatorname{Mor}_{\mathcal{C}}(X, A) \in \operatorname{Ob} \operatorname{\mathbf{Set}}$$

 $\operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \operatorname{Mor}_{\mathcal{C}}(X, f) \in \operatorname{Mor}_{\operatorname{\mathbf{Set}}}(\operatorname{Mor}_{\mathcal{C}}(X, A), \operatorname{Mor}_{\mathcal{C}}(X, B)),$

with $\operatorname{Mor}_{C}(X, f) : \operatorname{Mor}_{C}(X, A) \ni g \mapsto fg \in \operatorname{Mor}_{C}(X, B)$ or $\operatorname{Mor}_{C}(X, f)(g) = fg$ is a covariant functor $\operatorname{Mor}_{C}(X, -)$.

2. Let $X \in C$. Then

$$\operatorname{Ob} \mathcal{C} \ni A \mapsto \operatorname{Mor}_{\mathcal{C}}(A, X) \in \operatorname{Ob} \operatorname{\mathbf{Set}}$$

 $\operatorname{Mor}_{\mathcal{C}}(A, B) \ni f \mapsto \operatorname{Mor}_{\mathcal{C}}(f, X) \in \operatorname{Mor}_{\operatorname{set}}(\operatorname{Mor}_{\mathcal{C}}(B, X), \operatorname{Mor}_{\mathcal{C}}(A, X))$ with $\operatorname{Mor}_{\mathcal{C}}(f, X) : \operatorname{Mor}_{\mathcal{C}}(B, X) \ni g \mapsto gf \in \operatorname{Mor}_{\mathcal{C}}(A, X)$ or $\operatorname{Mor}_{\mathcal{C}}(f, X)(g) = gf$ is a contravariant functor $\operatorname{Mor}_{\mathcal{C}}(-, X)$.

PROOF. 1. $\operatorname{Mor}_{\mathcal{C}}(X, 1_A)(g) = 1_A g = g = \operatorname{id}(g), \operatorname{Mor}_{\mathcal{C}}(X, f) \operatorname{Mor}_{\mathcal{C}}(X, g)(h) = fgh = \operatorname{Mor}_{\mathcal{C}}(X, fg)(h).$

2. analogously.

Remark 8.2.4. The preceding lemma shows that $Mor_{\mathcal{C}}(-,-)$ is a functor in both arguments. A functor in two arguments is called a *bifunctor*. We can regard the bifunctor $Mor_{\mathcal{C}}(-,-)$ as a covariant functor

$$\operatorname{Mor}_{\mathcal{C}}(\operatorname{-},\operatorname{-}): \mathcal{C}^{op} \times \mathcal{C} \to \operatorname{\mathbf{Set}}.$$

The use of the dual category removes the fact that the bifunctor $Mor_{\mathcal{C}}(-,-)$ is contravariant in the first variable.

Obviously the composition of two functors is again a functor and this composition is associative. Furthermore for each category C there is an identity functor $Id_{\mathcal{C}}$.

Functors of the form $Mor_{\mathcal{C}}(X, -)$ resp. $Mor_{\mathcal{C}}(-, X)$ are called *representable functors* (covariant resp. contravariant) and X is called the *representing object* (see also section 8.8).