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18 1. COMMUTATIVE AND NONCOMMUTATIVE ALGEBRAIC GEOMETRY

3. Quantum Monoids and their Actions on Quantum Spaces

We use the orthogonal product introduced in the previous section as \product"
to de�ne the notion of a monoid (some may call it an algebra w.r.t. the orthogonal
product). Observe that on the geometric level the orthogonal product consists only
of commuting points. So whenever we de�ne a morphism on the geometric side with
domain an orthogonal product of quantum spaces f : X ? Y �! Z then we only have
to de�ne what happens to commuting pairs of points. That makes it much easier to
de�ne such morphisms for noncommutative coordinate algebras.

We are going to de�ne monoids in this sense and study their actions on quantum
spaces.

Let E be the functor represented by K. It maps each algebraH to the one-element
set f� : K �! Hg.

De�nition 1.3.1. Let M be a noncommutative space and let

m :M?M�!M and e : E �!M

be morphisms in QS such that the diagrams

M?M M-m

M?M?M M?M-m ? 1

?

1 ? m

?

m

and

E ?M �=M�=M? E M?M-id?�

?

�?id

?

r

M?M M-r

1M

HHHHHHHHHj

commute. Then (M;m; e) is called a quantum monoid.

Proposition 1.3.2. Let M be a noncommutative space with function algebra H.
Then H is a bialgebra if and only if M is a quantum monoid.

Proof. Since the functors M ? M, M ? E and E ? M are represented by
H 
H resp. H 
 K �= H resp. K 
H �= H the Yoneda Lemma de�nes a bijection
between the morphisms m : M ? M �! M and the algebra homomorphisms � :
H �! H 
H and similarly a bijection between the morphisms e : E �!M and the
algebra homomorphisms " : H �! K. Again by the Yoneda Lemma the bialgebra
diagrams in K-Alg commute if and only if the corresponding diagrams for a quantum
monoid commute.
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Observe that a similar result cannot be formulated for Hopf algebras H since
neither the antipode S nor the multiplicationr : H
H �! H are algebra homomor-
phisms. In contrast to a�ne algebraic groups (2.3.2) Hopf algebras in the category
K-Algop �= QR are not groups. Nevertheless, one de�nes

De�nition 1.3.3. A functor de�ned on the category of K-algebras and repre-
sented by a Hopf algebra H is called a quantum group.

De�nition 1.3.4. Let X be a noncommutative space and let M be a quantum
monoid. A morphism (a natural transformation) of quantum spaces � :M? X �! X
is called an operation of M on X if the diagrams

M? X X-�

M?M? X M ? X-m ? 1

?

1 ? �

?

�

and
X �= E ? X M ? X-�?id

X
?

�idX

HHHHHHHHHj

commute. We call X a noncommutativeM-space.

Proposition 1.3.5. Let X be a noncommutative space with function algebra A =
O(X ). Let M be a quantum monoid with function algebra B = O(M). Let � :
M ? X �! X be a morphism in QS and let f : A �! B 
 A be the associated
homomorphism of algebras. Then the following are equivalent

1. (X ;M; �) is an operation of the quantum monoid M on the noncommutative
space X ;

2. (A;H; f) de�ne an H-comodule algebra.

Proof. The homomorphisms of algebras � 
 1A, 1B 
 f , � 
 1A etc. represent
the morphisms of quantum spaces m ? id, id ? �, � ? id etc. Hence the required
diagrams are transferred by the Yoneda Lemma.

Example 1.3.6. 1. The quantum monoid of \quantum matrices":
We consider the algebra

Mq(2) := Kha; b; c; di=I = K

�
a b
c d

�
=I

where the two-sided ideal I is generated by the elements

ab� q�1ba; ac� q�1ca; bd� q�1db; cd� q�1dc; ad� da� (q�1 � q)bc; bc� cb:
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The quantum space Mq(2) associated with the algebra Mq(2) is given by

Mq(2)(A)= K-Alg(Mq(2); A)

=

��
a0 b0

c0 d0

�
ja0; b0; c0; d0 2 A; a0b0 = q�1b0a0; : : : ; b0c0 = c0b0

�

where each homomorphism of algebras f :Mq(2) �! A is described by the quadruple
(a0; b0; c0; d0) of images of the algebra generators a; b; c; d. The images must satisfy the
same relations that generate the two-sided ideal I hence

a0b0 = q�1b0a0; a0c0 = q�1c0a0; b0d0 = q�1d0b0; c0d0 = q�1d0c0;
b0c0 = c0b0; a0d0 � q�1b0c0 = d0a0 � qc0b0:

We write these quadruples as 2 � 2-matrices and call them quantum matrices. The
unusual commutation relations are chosen so that the following examples work.

The quantum space of quantum matrices turns out to be a quantum monoid. We
give both the algebraic (with function algebras) and the geometric (with quantum
spaces) approach to de�ne the multiplication.

a) The algebraic approach:
The algebra Mq(2) is a bialgebra with the diagonal

�

�
a b
c d

�
=

�
a b
c d

�



�
a b
c d

�
;

i.e. by �(a) = a 
 a + b 
 c, �(b) = a 
 b + b 
 d, �(c) = c 
 a + d 
 c and
�(d) = c
 b+ d 
 d, and with the counit

"

�
a b
c d

�
=

�
1 0
0 1

�
;

i.e. "(a) = 1, "(b) = 0, "(c) = 0, and "(d) = 1. We have to prove that � and " are
homomorphisms of algebras and that the coalgebra laws are satis�ed. To obtain a
homomorphism of algebras � : Mq(2) �!Mq(2)
Mq(2) we de�ne � : Kha; b; c; di �!
Mq(2) 
Mq(2) on the free algebra (the polynomial ring in noncommuting variables)
Kha; b; c; di generated by the set fa; b; c; dg and show that it vanishes on the ideal
I or more simply on the generators of the ideal. Then it factors through a unique
homomorphism of algebras � : Mq(2) �!Mq(2)
Mq(2). We check this only for one
generator of the ideal I:

�(ab� q�1ba) = �(a)�(b)� q�1�(b)�(a) =
= (a
 a+ b
 c)(a
 b+ b
 d) � q�1(a
 b+ b
 d)(a
 a+ b
 c)
= aa
 ab+ ab
 ad+ ba
 cb+ bb
 cd� q�1(aa
 ba+ ab
 bc+ ba
 da+ bb
 dc)
= aa
 (ab� q�1ba) + ab
 (ad� q�1bc) + ba
 (cb� q�1da) + bb
 (cd� q�1dc)
= ba
 (q�1ad� q�2bc+ cb� q�1da) � 0 mod (I):

The reader should check the other identities.
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The coassociativity follows from

(�
 1)�

�
a b
c d

�
= �

�
a b
c d

�



�
a b
c d

�
= (

�
a b
c d

�



�
a b
c d

�
)


�
a b
c d

�
=

=

�
a b
c d

�

 (

�
a b
c d

�



�
a b
c d

�
) =

�
a b
c d

�

�

�
a b
c d

�
= (1
�)�

�
a b
c d

�
:

The reader should check the properties of the counit.
b) The geometric approach:
Mq(2) has a rather remarkable (and actually well known) comultiplication that is

better understood by using the induced multiplication of commuting points. Given

two commuting quantum matrices

�
a1 b1
c1 d1

�
and

�
a2 b2
c2 d2

�
inMq(2)(A). Then their

matrix product �
a1 b1
c1 d1

��
a2 b2
c2 d2

�
=

�
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

�

is again a quantum matrix. To prove this we only check one of the relations

(a1a2 + b1c2)(a1b2 + b1d2) = a1a2a1b2 + a1a2b1d2 + b1c2a1b2 + b1c2b1d2
= a1a1a2b2 + a1b1a2d2 + b1a1c2b2 + b1b1c2d2
= q�1a1a1b2a2 + q�1b1a1(d2a2 + (q�1 � q)b2c2) + b1a1b2c2 + q�1b1b1d2c2
= q�1(a1a1b2a2 + a1b1b2c2 + b1a1d2a2 + b1b1d2c2)
= q�1(a1b2a1a2 + a1b2b1c2 + b1d2a1a2 + b1d2b1c2)
= q�1(a1b2 + b1d2)(a1a2 + b1c2)

We have used that the two points are commuting points. This multiplication obviously
is a natural transformation Mq(2) ? Mq(2)(A) �! Mq(2)(A) (natural in A). It is

associative and has unit

�
1 0
0 1

�
. For the associativity observe that by 1.2.14

((

�
a1 b1
c1 d1

�
;

�
a2 b2
c2 d2

�
);

�
a3 b3
c3 d3

�
)

is a pair of commuting points if and only if

(

�
a1 b1
c1 d1

�
; (

�
a2 b2
c2 d2

�
;

�
a3 b3
c3 d3

�
))

is a pair of commuting points.

Since

�
1 0
0 1

��
a b
c d

�
=

�
a b
c d

�
=

�
a b
c d

��
1 0
0 1

�
for all quantum matrices�

a b
c d

�
2 Mq(2)(B) we see that Mq(2) is a quantum monoid.

It remains to show that the multiplication of Mq(2) and the comultiplication of
Mq(2) correspond to each other by the Yoneda Lemma. The identity morphism of
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Mq(2) 
Mq(2) is given by the pair of commuting points

(�1; �2) 2 Mq(2) ?Mq(2)(Mq(2)
Mq(2)) = K-Alg(Mq(2)
Mq(2);Mq(2)
Mq(2)):

Since �1 =

�
a b
c d

�

 1 =

�
a
 1 b
 1
c 
 1 d
 1

�
and �2 = 1 


�
a b
c d

�
=

�
1 
 a 1
 b
1
 c 1
 d

�

we have id = (�1; �2) = (

�
a b
c d

�

 1; 1 


�
a b
c d

�
). The Yoneda Lemma de�nes the

diagonal as the image of the identity under K-Alg(Mq(2)
Mq(2);Mq(2)
Mq(2)) �!

K-Alg(Mq(2);Mq(2)
Mq(2)) by the multiplication. So �(

�
a b
c d

�
) = � = �1 � �2 =

(

�
a b
c d

�

 1) � (1


�
a b
c d

�
) =

�
a b
c d

�



�
a b
c d

�
.

Thus Mq(2) de�nes a quantum monoidMq(2) with

Mq(2)(B) =

��
a0 b0

c0 d0

���a0; b0; c0; d0 2 B; a0b0 = q�1b0a0; : : : ; b0c0 = c0b0
�
:

This is the deformed version of M�
2 the multiplicative monoid of the 2 � 2-matrices

of commutative algebras.

2. Let A
2j0
q = Khx; yi=(xy � q�1yx) be the function algebra of the quantum plane

A
2j0
q . By the de�nition 1.2.5 we have

A
2j0
q (A0) =

��
x
y

���x; y 2 A0;xy = q�1yx

�
:

The set

Mq(2)(A
0) =

��
u x
y z

���u; x; y; z 2 A0;ux = q�1xu; : : : ; xy = yx

�

operates on this quantum plane by matrix multiplication

Mq(2)(A
0) ? A

2j0
q (A0) 3 (

�
a b
c d

�
;

�
x
y

�
) 7!

�
a b
c d

�
�

�
x
y

�
2 A

2j0
q (A0):

Again one should check that the required equations are preserved. Since we have
a matrix multiplication we get an operation as in the preceding proposition. In

particular A
2j0
q is a Mq(2)-comodule algebra.

As in example 1. we get the comultiplication as �(

�
x
y

�
) = � = (

�
a b
c d

�

 1) �

(1


�
x
y

�
) =

�
a b
c d

�



�
x
y

�
:

3. LetA
0j2
q = Kh�; �i=(�2; �2; ��+q��) be the function algebra of the dual quantum

plane A
0j2
q . By the de�nition 1.2.5 we have

A
0j2
q (A0) =

n�
a0 b0

����a0; b0 2 A0; a0
2
= 0; b0

2
= 0; a0b0 = �qb0a0

o
:
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The quantum monoid Mq(2) also operates on the dual quantum plane by matrix
multiplication

A
0j2
q (A0) ?Mq(2)(A

0) 3 (
�
� �

�
;

�
a b
c d

�
) 7!

�
� �

�
�

�
a b
c d

�
2 A

0j2
q (A0):

This gives another example of a Mq(2)-comodule algebra A
0j2
q �! A

0j2
q 
Mq(2) with

�(
�
� �

�
) = � = (

�
� �

�

 1) � (1


�
a b
c d

�
) =

�
� �

�



�
a b
c d

�
:

What is now the reason for the remarkable relations on Mq(2)? It is based on
a fact that we will show later namely that Mq(2) is the universal quantum monoid

acting on the quantum plane A 2j0
q from the left and on the dual quantum plane A 0j2

q

from the right. This however happens in the category of quantum planes represented
by quadratic algebras. Here we will show a simpler theorem for �nite dimensional
algebras.

Problem 1.3.1. Determine the H -points of the quantum plane A
2j0
q where H is

the R-algebra of the quaternions.

De�nition 1.3.7. 1. Let X be a quantum space. A quantum space M(X )
together with a morphism of quantum spaces � :M(X ) ? X �! X is called a
quantum space acting universally on X (or simply a universal quantum space
for X ) if for every quantum space Y and every morphism of quantum spaces
f : Y ? X �! X there is a unique morphism of quantum spaces g : Y �!M(X )
such that the following diagram commutes

M(X ) ? X X :-
�

f

@
@
@
@@R

Y ? X

?

g?1X

2. Let A be a K-algebra. A K-algebra M(A) together with a homomorphism of
algebras � : A �!M(A)
 A is called an algebra coacting universally on A (or
simply a universal algebra for A) if for every K-algebra B and every homomor-
phism of K-algebras f : A �! B 
 A there exists a unique homomorphism of
algebras g : M(A) �! B such that the following diagram commutes

A M(A)
A-�

f

@
@
@
@@R
B 
A
?

g
1A

By the universal properties the universal algebra M(A) for A and the universal
quantum space M(X ) for X are unique up to isomorphism.
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Proposition 1.3.8. 1. Let A be a K-algebra with universal algebra M(A) and
� : A �! M(A) 
 A. Then M(A) is a bialgebra and A is an M(A)-comodule
algebra by �.

2. If B is a bialgebra and if f : A �! B
A de�nes the structure of a B-comodule
algebra on A then there is a unique homomorphism g : M(A) �! B of bialgebras
such that the following diagram commutes

A M(A)
A-�

f
@
@
@
@@R
B 
A
?

g 
 1A

The corresponding statement for quantum spaces and quantum monoids is the
following.

Proposition 1.3.9. 1. Let X be a quantum space with universal quantum
space M(X ) and � :M(X ) ? A �! A. Then M(X ) is a quantum monoid and
X is an M(X )-space by �.

2. If Y is another quantum monoid and if f : Y ? X �! X de�nes the structure
of a Y-space on X then there is a unique morphism of quantum monoids g :
Y �!M(X ) such that the following diagram commutes

M(X ) ? X X :-
�

f

@
@
@
@@R

Y ? X

?

g?1X

Proof. We give the proof for the algebra version of the proposition. Consider
the following commutative diagram

M(A)
A M(A)
M(A)
A-
1M(A)
�

A M(A)
A-�

?
�

?
�
1A

where the morphism of algebras � is de�ned by the universal property of M(A)
with respect to the algebra morphism (1M(A) 
 �)�. Furthermore there is a unique
morphism of algebras � :M(A) �! K such that

A M(A)
A-�

1A

@
@
@
@@R

A �= K 
A
?

�
1A
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commutes.
The coalgebra axioms arise from the following commutative diagrams

A M(A)
A-�

?
�

?
�
1A

M(A)
A M(A)
M(A)
A-1M(A)
�

?
�
1A

?
1M(A)
�

?
�
1M(A)
1A

?
1M(A)
�
1A

M(A)
M(A)
A M(A)
M(A)
M(A)
A-1M(A)
1M(A)
�

and

A M(A)
A-�

?
�

?
�
1A

?

1M(A)
1AM(A)
A M(A)
M(A)
A-1M(A)
�

1M(A)
1A

PPPPPPPPPPq
M(A)
A �= M(A)
 K 
A

?
1M(A)
�
1A

and

A M(A)
A-�

?

1A

?
�

?
�
1A

M(A)
A M(A)
M(A)
A-1M(A)
�

?
�
1A

?
�
1M(A)
1A

A M(A)
A �= K 
M(A)
A:-�

In fact these diagrams imply by the uniqueness of the induced homomorphisms of
algebras (�
 1M(A))� = (1M(A) 
�)�, (1M(A) 
 �)� = 1M(A) and � 
 (1M(A))� =
1M(A). Finally A is an M(A)-comodule algebra by the de�nition of � and �.

Now assume that a structure of a B-comodule algebra on A is given by a bialgebra
B and f : A �! B
A. Then there is a unique homomorphism of algebras g : M(A) �!
B such that the diagram

A M(A)
A-�

f

@
@
@
@@R
B 
A
?

g
1A
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commutes. Then the following diagram

A M(A)
A-� M(A)
A M(A)
M(A)
A-�
1A
-

1M(A)
�

f

Q
Q
Q
QQs ?

g
1A

?
g
g
1A

B 
A B 
B 
A
-�B
1A
-

1B
f

implies ((g 
 g)� 
 1A)� = (g 
 g 
 1A)(� 
 1A)� = (g 
 g 
 1A)(1M(A) 
 �)� =
(g 
 (g 
 1A)�)� = (1B 
 (g 
 1A)�)(g 
 1A)� = (1B 
 f)f = (�B 
 1A)f = (�B 

1A)(g 
 1A)� = (�Bg 
 1A)� hence (g 
 g)� = �Bg. Furthermore the diagram

A M(A)
A-�

B 
A

f

HHHHHHHj ?
g
1A

?

�
1A

A �= K 
A

1A

@
@
@
@
@
@
@
@R ?

�B
1A

implies �Bg = �. Thus g is a homomorphism of bialgebras.

Since universal algebras for algebras A tend to become very big they do not exist
in general. But a theorem of Tambara's says that they exist for �nite dimensional
algebras (over a �eld K).

De�nition 1.3.10. If X is a quantum space with �nite dimensional function
algebra then we call X a �nite quantum space.

The following theorem is the quantum space version and equivalent to a theorem
of Tambara.

Theorem 1.3.11. Let X be a �nite quantum space. Then there exists a (univer-
sal) quantum space M(X ) with morphism of quantum spaces � :M(X ) ? X �! X .

The algebra version of this theorem is

Theorem 1.3.12. (Tambara) Let A be a �nite dimensional K-algebra. Then
there exists a (universal) K-algebra M(A) with homomorphism of algebras � : A �!
M(A)
A.

Proof. We are going to construct the K-algebra M(A) quite explicitly. First
we observe that A� = HomK(A;K) is a coalgebra (cf. problem A.6.8) with the
structural morphism � : A� �! (A 
 A)� �= A� 
 A�. Denote the dual basis byPn

i=1 ai 
 �ai 2 A
A�. Now let T (A
A�) be the tensor algebra of the vector space
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A
A�. Consider elements of the tensor algebra

xy 
 � 2 A
A�;
x
 y 
�(�) 2 A
A
A� 
A� �= A
A� 
A
A�;
1
 � 2 A
A�;
�(1) 2 K:

The following elements

xy 
 � � x
 y 
�(�)(1)

and

1
 � � �(1)(2)

generate a two-sided ideal I � T (A
A�). Now we de�ne

M(A) := T (A
A�)=I

and the cooperation � : A 3 a �!
Pn

i=1(a
 �ai) 
 ai 2 T (A 
 A�)=I 
 A. This is a
well-de�ned linear map.

To show that this map is a homomorphism of algebras we �rst describe the mul-
tiplication of A by aiaj =

P
k �

k
ijak. Then the comultiplication of A� is given by

�(�ak) =
P

ij �
k
ij�a

i 
 �aj since (�(�ak); al 
 am) = (�ak; alam) =
P

r �
r
lm(�a

k; ar) =

�k
lm =

P
ij �

k
ij(�a

i; al)(�aj; am) = (
P

ij �
k
ij�a

i 
 �aj; al 
 am). Now write 1 =
P

�kak.

Then we get �(�ai) = �i since �(�ai) = (�ai; 1) =
P

j �
j(�ai; aj) = �i. So we have

�(a)�(b) = (
Pn

i=1(a
 �ai)
 ai) � (
Pn

j=1(b
 �aj)
 aj) =
P

ij(a
 b
 �ai 
 �aj)
 aiaj =P
ijk �

k
ij(a
 b
 �ai
 �aj)
 ak =

P
k(a
 b
�(�ak))
 ak =

P
k(ab
 �ak)
 ak = �(ab).

Furthermore we have �(1) =
P

i(1
 �ai)
ai =
P

i �a
i(1)
ai = 1


P
i �a

i(1)ai = 1
1.
Hence � is a homomorphism of algebras.

Now we have to show that there is a unique g for each f . First of all f : A �! B
A
induces uniquely determined linear maps fi : A �! B with f(a) =

P
i fi(a)
 ai since

the ai form a basis. Since f is a homomorphism of algebras we get from
P

k fk(a)

ak = f(ab) = f(a)f(b) =

P
ij(fi(a) 
 ai)(fj(b) 
 aj) =

P
ij fi(a)fj(b) 
 aiaj =P

ijk �
k
ijfi(a)fj(b)
 ak by comparison of coe�cients

fk(ab) =
X
ij

�k
ijfi(a)fj(b):

Furthermore we de�ne g(a
 �a) := (1
 �a)f(a) 2 B. Then we get in particular g(a

�ai) = (1
 �ai)(

P
j
fj(a)
 aj) = fi(a). We can extend the map g to a homomorphism

of algebras g : T (A 
 A�) �! B. Applied to the generators of the ideal we get
g(ab 
 �ak � a 
 b 
 �(�ak)) = (1 
 �ak)

P
l fl(ab) 
 al �

P
rsij �

k
ij(1 
 �ai)(fr(a) 


ar) � (1 
 �aj)(fs(b) 
 as) = fk(ab) �
P

ij
�k
ijfi(a)fj(b) = 0. We have furthermore

g(1 
 � � �(1)) = (1 
 �)f(1) � �(1) = (1 
 �)(1 
 1) � �(1) = 1�(1) � �(1) = 0.
Thus the homomorphism of algebras g vanishes on the ideal I so it may be factored
through M(A) = T (A)=I. Denote this factorization also by g. Then the diagram
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commutes since (g 
 1A)�(a) = (g 
 1A)(
P

i(a 
 �ai) 
 ai) =
P

i(1 
 �ai)f(a) 
 ai =P
ij fj(a)(�a

i; aj)
 ai =
P

i fi(a)
 ai = f(a).
We still have to show that g is uniquely determined. Assume that we also have

(h 
 1A)� = f then
P

i h(a 
 �ai) 
 ai = (h 
 1A)�(a) = f(a) =
P

i fi(a)
 ai hence
h(a
 �ai) = fi(a) = g(a
 �ai), i.e. g = h.

De�nition 1.3.13. Let A be a K-algebra. The universal algebra M(A) for A
that is a bialgebra is also called the coendomorphism bialgebra of A.

Problem 1.3.2. 1. Determine explicitly the dual coalgebra A� of the algebra
A := Khxi=(x2). (Hint: Find a basis for A.)

2. Determine and describe the coendomorphism bialgebra of A from problem 1.1.
(Hint: Determine �rst a set of algebra generators of M(A). Then describe the
relations.)

3. Determine explicitly the dual coalgebra A� of A := Khxi=(x3).
4. Determine and describe the coendomorphism bialgebra of A from problem 1.3.
5. (*) Determine explicitly the dual coalgebra A� of A := Khx; yi=I where the

ideal I is generated as a two-sided ideal by the polynomials

xy � q�1yx; x2; y2:

6. (*) Determine the coendomorphism bialgebra of A from problem 1.5.
7. Let A be a �nite dimensional K-algebra with universal bialgebra A �! B 
A.

Show
i) that Aop �! Bop 
 Aop is universal (where Aop has the multiplication
r� : A
A �! A
A �! A);

ii) that A �= Aop implies B �= Bop (as bialgebras);
iii) that for commutative algebras A the algebra B satis�es B �= Bop but that

B need not be commutative.
iv) Find an isomorphismB �= Bop for the bialgebra B = Kha; bi=(a2; ab+ba).

(compare problem 1.2 2).


