Kategorientheorie

- 29. Zeigen Sie: ein spaltender Epimorphismus ist ein Epimorphismus. Wie steht es um die entsprechende Aussage für Monomorphismen?
- 30. Zeigen Sie, daß die folgenden Aussagen für einen Morphismus $f:B\to C$ in einer Kategorie $\mathcal C$ äquivalent sind:
 - (a) f ist ein Isomorphismus.
 - (b) f ist sowohl ein Monomorphismus als auch ein spaltender Epimorphismus.
 - (c) f ist sowohl ein Epimorphismus als auch ein spaltender Monomorphismus.
- 31. (a) Ein Homomorphismus von Graphen ist genau dann ein Monomorphismus, wenn beide Abbildungen $f_0: G_0 \to H_0$ und $f_1: G_1 \to H_1$ injektiv sind
 - (b) Ein Homomorphismus von Graphen ist genau dann ein Epimorphismus, wenn beide Abbildungen $f_0:G_0\to H_0$ und $f_1:G_1\to H_1$ surjektiv sind
- 32. Die natürlichen Zahlen \mathbb{N} und die ganzen Zahlen \mathbb{Z} sind beides Monoide unter der Addition. Die Inklusions-Abbildung $\iota : \mathbb{N} \to \mathbb{Z}$ ist ein Homomorphismus von Monoiden, der sicherlich nicht surjektiv ist. Zeigen Sie, dass ι ein Epimorphismus ist.

Abgabe: Freitag, 18.6.2004, 15 Uhr, in der Vorlesung. Bitte geben Sie auf Ihrer Lösung Ihren Namen an.