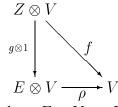
Problem set for Quantum Groups and Noncommutative Geometry

- (29) Determine the structure of a covector space on a vector space V from the fact that Hom(V, W) is a vector space for all vector spaces W.
- (30) The real unit circle $S^1(\mathbb{R})$ carries the structure of a group by the addition of angles. Is it possible to make S^1 with the affine algebra $\mathbb{K}[c, s]/(s^2 + c^2 1)$ into an affine algebraic group? (Hint: How can you add two points (x_1, y_1) and (x_2, y_2) on the unit circle, such that you get the addition of the associated angles?)

Find a group structure on the torus \mathcal{T} .

(31) Let V be a vector space. Show that there is a universal vector space E and homomorphism $\rho: E \otimes V \to V$ (such that for each vector space Z and each homomorphism $f: Z \otimes V \to V$ there is a unique homomorphism $g: Z \to E$ such that



commutes). We call E and $\rho: E \otimes V \to V$ a vector space acting universally on V.

(32) Let E and $\rho : E \otimes V \to V$ be a vector space acting universally on V. Show that E has a uniquely determined structure of an algebra such that V becomes a left E-module.

Due date: Tuesday, 18.06.2002, 16:15 in Lecture Hall E41