Problem set for Quantum Groups and Noncommutative Geometry

- (13) Determine explicitly the dual coalgebra A^* of $A := \mathbb{K}\langle x \rangle / (x^3)$.
- (14) Determine and describe the coendomorphism bialgebra of A from problem 12. (Hint: Determine first a set of algebra generators of M(A). Then describe the relations.)
- (15) Let A be a finite dimensional K-algebra with universal bialgebra $A \to B \otimes A$. Show
 - i) that $A^{op} \to B^{op} \otimes A^{op}$ is universal (where A^{op} has the multiplication $\nabla \tau : A \otimes A \to A \otimes A \to A$);
 - ii) that $A \cong A^{op}$ implies $B \cong B^{op}$ (as bialgebras);
 - iii) that for commutative algebras A the algebra B satisfies $B \cong B^{op}$ but that B need not be commutative.
 - iv) Find an isomorphism $B \cong B^{op}$ for the bialgebra $B = \mathbb{K}\langle a, b \rangle / (a^2, ab + ba)$. (compare problem 14).
- (16) Consider the algebra $K[\epsilon]/(\epsilon^2)$ the so called algebra of dual numbers over a field K. Consider the algebra B with (noncommuting) generators a, b, c, d and relations:

ac = acac ad = acad + adac bc = acbc = bcac bd = acbd + adbc = bcad + bdac bcbc = bcbd + bdbc = 0ac = 1 ad = 0

Show that B together with the cooperation

$$\delta: A \to B \otimes A$$

with $\delta(\epsilon) = bc \otimes 1 + bd \otimes \epsilon$ is the coendomorphism bialgebra of A.

Due date: Tuesday, 14.05.2002, 16:15 in Lecture Hall E41