Problem set for Quantum Groups and Noncommutative Geometry

(9) Consider the following subset \mathbb{H} of the set of complex 2×2-matrices:

$$
\mathbb{H}:=\left\{\left.\left(\begin{array}{cc}
x & -y \\
\bar{y} & \bar{x}
\end{array}\right) \in M_{\mathbb{C}}(2 \times 2) \right\rvert\, x, y \in \mathbb{C}\right\}
$$

We call \mathbb{H} the set of Hamiltonian quaternions. For

$$
h=\left(\begin{array}{cc}
x & -y \\
\bar{y} & \bar{x}
\end{array}\right)
$$

we define:

$$
\bar{h}:=\left(\begin{array}{cc}
\bar{x} & y \\
-\bar{y} & x
\end{array}\right)
$$

Show:
(a) $h \bar{h}=\left(|x|^{2}+|y|^{2}\right) E$ (E the unit matrix),
(b) \mathbb{H} is a real subalgebra of the complex algebra of 2×2-matrices.
(c) \mathbb{H} is a division algebra, i. e. each element different from zero has an inverse under the multiplication.
(d) Let

$$
I:=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad J:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad K:=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)
$$

Then E, I, J, K is an \mathbb{R}-basis of \mathbb{H} an we have the following multiplication table:

$$
\begin{gathered}
I^{2}=J^{2}=K^{2}=-1 \\
I J=-J I=K \quad J K=-K J=I \quad K I=-I K=J .
\end{gathered}
$$

(10) Compute the \mathbb{H}-points $A^{2 \mid 0}(\mathbb{H})$ of the quantum plane.
(11) Definition: Let \mathcal{X} be an geometric space with affine algebra A. Let D be an algebra. A natural transformation $\rho: D \times \mathcal{X} \rightarrow \mathbb{A}$ is called an algebra action if $\rho(B)(-, p): D$ $\rightarrow \mathbb{A}(B)=B$ is an algebra homomorphism for all B and all $p \in \mathcal{X}(B)$. Give proofs for:
Lemma: The natural transformation $\psi: A \times \mathcal{X} \rightarrow \mathbb{A}$ is an algebra action.

Theorem: Let D be an algebra and $\rho: D \times \mathcal{X}(-) \rightarrow \mathbb{A}(-)$ be an algebra action. Then there exists a unique algebra homomorphism $f: D \rightarrow A$ such that the diagram

commutes.
(12) Determine explicitly the dual coalgebra A^{*} of the algebra $A:=\mathbb{K}\langle x\rangle /\left(x^{2}\right)$. (Hint: Find a basis for A.)

Due date: Tuesday, 07.05.2002, 16:15 in Lecture Hall E41

