Problem set for Quantum Groups and Noncommutative Geometry

- (5) Let \mathcal{X} denote the plane curve $y = x^2$. Then \mathcal{X} is isomorphic to the affine line.
- (6) * Let K be an algebraically closed field. Let p be an irreducible square polynomial in K[x, y]. Let Z be the conic section defined by p with the affine algebra K[x, y]/(p). Show that Z is naturally isomorphic either to X or to U from problems (3) resp. (5).
- (7) Let \mathcal{X} be an affine scheme with affine algebra

$$A = \mathbb{K}[x_1, \ldots, x_n]/(p_1, \ldots, p_m).$$

Define "coordinate functions" $q_i : \mathcal{X}(B) \to B$ which describe the coordinates of *B*-points and identify these coordinate functions with elements of *A*.

(8) Let S_3 be the symmetric group and $A := \mathbb{K}[S_3]$ be the group algebra on S_3 . Describe the points of $\mathcal{X}(B) = \mathbb{K}-\mathcal{A}lg(A, B)$ as a subspace of $\mathbb{A}^2(B)$. What is the commutative part $\mathcal{X}_c(B)$ of \mathcal{X} and what is the affine algebra of \mathcal{X}_c ?

Due date: Tuesday, 30.04.2002, 16:15 in Lecture Hall E41