Problem set for Quantum Groups and Noncommutative Geometry

(5) Let \mathcal{X} denote the plane curve $y=x^{2}$. Then \mathcal{X} is isomorphic to the affine line.
(6) * Let \mathbb{K} be an algebraically closed field. Let p be an irreducible square polynomial in $\mathbb{K}[x, y]$. Let \mathcal{Z} be the conic section defined by p with the affine algebra $\mathbb{K}[x, y] /(p)$. Show that \mathcal{Z} is naturally isomorphic either to \mathcal{X} or to \mathcal{U} from problems (3) resp. (5).
(7) Let \mathcal{X} be an affine scheme with affine algebra

$$
A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] /\left(p_{1}, \ldots, p_{m}\right)
$$

Define "coordinate functions" $q_{i}: \mathcal{X}(B) \rightarrow B$ which describe the coordinates of B-points and identify these coordinate functions with elements of A.
(8) Let S_{3} be the symmetric group and $A:=\mathbb{K}\left[S_{3}\right]$ be the group algebra on S_{3}. Describe the points of $\mathcal{X}(B)=\mathbb{K}-\mathcal{A} l g(A, B)$ as a subspace of $\mathbb{A}^{2}(B)$. What is the commutative part $\mathcal{X}_{c}(B)$ of \mathcal{X} and what is the affine algebra of \mathcal{X}_{c} ?

Due date: Tuesday, 30.04.2002, 16:15 in Lecture Hall E41

