Problem set for Quantum Groups and Noncommutative Geometry

- (1) Determine the affine algebra of the functor "unit sphere" S^{n-1} in \mathbb{A}^n .
- (2) Determine the affine algebra of the functor "torus" \mathcal{T} and find an "embedding" of \mathcal{T} into \mathbb{A}^3 .
- (3) Let \mathcal{U} denote the plane curve xy = 1. Then \mathcal{U} is not isomorphic to the affine line. (Hint: An isomorphism $\mathbb{K}[x, x^{-1}] \to \mathbb{K}[y]$ sends x to a polynomial p(y)which must be invertible. Consider the highest coefficient of p(y) and show that $p(y) \in \mathbb{K}$. But that means that the map cannot be bijective.) \mathcal{U} is also called the *unit functor*. Can you explain, why?
- (4) Let K = C be the field of complex numbers. Show that the unit functor U : K-cAlg → Set in Problem (3) is naturally isomorphic to the unit circle S¹. (Hint: There is an algebra isomorphism between the representing algebras K[e, e⁻¹] and K[c, s]/(c² + s² 1).)

Due date: Tuesday, 23.04.2002, 16:15 in Lecture Hall E41