Problem set for Advanced Algebra

- (33) Show that there is a natural isomorphism $Map(A \times B, C) \cong Map(B, Map(A, C))$. Determine the associated unit and counit.
- (34) Show that the underlying functor $U : Ab \to Gr$, that forgets the commutativity of Abelian groups, has a left adjoint functor \mathcal{F} : $Gr \to Ab$. Determine the associated unit and counit. (Hint: Consider the construction of the commutator factor group.)
- (35) Show that the underlying functor U: Ab \rightarrow comMon from the category of Abelian groups to the category of commutative monoids, that forgets the existence of inverses in groups, has a left adjoint functor \mathcal{F} : comMon \rightarrow Ab. Determine the associated unit and counit. (Hint: Consider the construction of fractions for rational numbers.)
- (36) Let $f : R \to S$ be a ring homomorphism. Show that the underlying functor $U : S \operatorname{-Mod} \to R \operatorname{-Mod}$ from the category of S-modules to the category of R-modules, that forgets the Smodule structure on modules and replaces it by the R-module structure $r \cdot m := f(r)m$, has a left adjoint functor $\mathcal{F} : R \operatorname{-Mod} \to S \operatorname{-Mod}$ and a right adjoint functor $\mathcal{G} : R \operatorname{-Mod} \to S \operatorname{-Mod}$. Determine the associated units and counits.

Due date: Tuesday, 18.12.2001, 16:15 in Lecture Hall 138