Problem set for Advanced Algebra

(25) Let $(A \times B, p_A, p_B)$ be the product of A and B in C. Then there is a natural isomorphism

 $\operatorname{Mor}(-, A \times B) \cong \operatorname{Mor}_{\mathcal{C}}(-, A) \times \operatorname{Mor}_{\mathcal{C}}(-, B).$

- (26) Let \mathcal{C} be a category with finite products. Show that there is a bifunctor $\times : \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$ such that $(- \times -)(A, B)$ is the object of a product of A and B. We denote elements in the image of this functor by $A \times B := (- \times -)(A, B)$ and similarly $f \times g$.
- (27) Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ be an equivalence with respect to $\mathcal{G} : \mathcal{D} \to \mathcal{C}$, $\varphi : \mathcal{GF} \cong \mathrm{Id}_{\mathcal{C}}$, and $\psi : \mathcal{FG} \cong \mathrm{Id}_{\mathcal{D}}$. Show that $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ is an equivalence. Show that \mathcal{G} is uniquely determined by \mathcal{F} up to a natural isomorphism.
- (28) (a) Given $V \in \mathbb{K}$ Mod. For $A \in \mathbb{K}$ Alg define

 $F(A) := \{ f : V \to A | f \mathbb{K}\text{-linear}, \forall v, w \in V : f(v) \cdot f(w) = 0 \}.$

Show that this defines a functor $F : \mathbb{K}$ - Alg \rightarrow Set.

(b) Show that F has the algebra D(V) as constructed in Exercise 2.1 (3) as a representing object.

Due date: Tuesday, 4.12.2001, 16:15 in Lecture Hall 138