Problem set for Advanced Algebra

- (21) Let $R := K \times K$ for K a field.
 - (a) Show that $P := \{(a, 0) | a \in K\}$ is a finitely generated projective *R*-module.
 - (b) Decide if the *R*-modules *P* and $Q := \{(0, a) | a \in K\}$ are isomorphic?
 - (c) Find a dual basis for P.
- (22) (a) Let R be a ring and P_R be an R-module. Show that P is a finitely generated projective module if and only if P is a direct summand of the R-module R^n .
 - (b) Let P_R be a finitely generated projective right *R*-module. Show that $P^* = \text{Hom}_R(P, R)$ is a finitely generated projective left *R*-module.
- (23) Let R be a ring. Show that for each projective R-module P there is a free R-module F such that $P \oplus F \cong F$.
- (24) Let \mathcal{C} be a category with finite products. For each object A in \mathcal{C} show that there exists a morphism $\Delta_A : A \to A \times A$ satisfying $p_1 \Delta_A = 1_A = p_2 \Delta_A$. Show that this defines a natural transformation. What are the functors?

Due date: Tuesday, 27.11.2001, 16:15 in Lecture Hall 138