Problem set for Advanced Algebra

- (17) Show that $V \otimes V^*$ is a coalgebra for every finite dimensional vector space V over a field \mathbb{K} if the comultiplication is defined by $\Delta(v \otimes v^*) := \sum_{i=1}^n v \otimes v_i^* \otimes v_i \otimes v^*$ where $\{v_i\}$ and $\{v_i^*\}$ are dual bases of V resp. V^* .
- (18) Show that a finite dimensional vector space V is a comodule over the coalgebra $V \otimes V^*$ as defined in problem 17 with the coaction $\delta(v) := \sum v \otimes v_i^* \otimes v_i \in (V \otimes V^*) \otimes V$ where $\sum v_i^* \otimes v_i$ is the dual basis of V in $V^* \otimes V$.
- (19) Show that the free K-modules $\mathbb{K}X$ with the basis X and the comultiplication $\Delta(x) = x \otimes x$ is a coalgebra. What is the counit? Is the counit unique?
- (20) Show that the tensor product of two commutative K-algebras is a coproduct.

Due date: Tuesday, 20.11.2001, 16:15 in Lecture Hall 138