Problem set for

Advanced Algebra

(9) (Tensors in physics: \# $9,10,11$) Let V be a finite dimensional vector space over the field \mathbb{K} and let V^{*} be its dual space. Let t be a tensor in $V \otimes \ldots \otimes$ $V \otimes V^{*} \otimes \ldots \otimes V^{*}=V^{\otimes r} \otimes\left(V^{*}\right)^{\otimes s}$.

Show that for each basis $B=\left(b_{1}, \ldots, b_{n}\right)$ and dual basis $B^{*}=\left(b^{1}, \ldots, b^{n}\right)$ there is a uniquely determined scheme (a family or an $(r+s)$-dimensional matrix) of coefficients $\left(a(B)_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}}\right.$) with $a(B)_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}} \in \mathbb{K}$ such that

$$
\begin{equation*}
t=\sum_{i_{1}=1}^{n} \ldots \sum_{i_{r}=1}^{n} \sum_{j_{1}=1}^{n} \ldots \sum_{j_{s}=1}^{n} a(B)_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}} b_{i_{1}} \otimes \ldots \otimes b_{i_{r}} \otimes b^{j_{1}} \otimes \ldots \otimes b^{j_{s}} .(1) \tag{1}
\end{equation*}
$$

(10) Show that for each change of bases $L: B \rightarrow C$ with $c_{j}=\sum \lambda_{j}^{i} b_{i}$ (with inverse matrix $\left.\left(\mu_{j}^{i}\right)\right)$ the following transformation formula holds

$$
\begin{equation*}
a(B)_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}}=\sum_{k_{1}=1}^{n} \ldots \sum_{k_{r}=1}^{n} \sum_{l_{1}=1}^{n} \ldots \sum_{l_{s}=1}^{n} \lambda_{k_{1}}^{i_{1}} \ldots \lambda_{k_{r}}^{i_{r}} \mu_{j_{1}}^{l_{1}} \ldots \mu_{j_{s}}^{l_{s}} a(C)_{l_{1}, \ldots, l_{s}}^{k_{1}, \ldots, k_{r}} \tag{2}
\end{equation*}
$$

(11) Show that every family of schemes of coefficients

$$
(a(B) \mid B \text { basis of } V)
$$

with $a(B)=\left(a(B)_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}}\right)$ and $a(B)_{j_{1}, \ldots, j_{s}}^{i_{1}, \ldots, i_{r}} \in \mathbb{K}$ satisfying the transformation formula (2) defines a unique tensor (independent of the choice of the basis) $t \in V^{\otimes r} \otimes\left(V^{*}\right)^{\otimes s}$ such that (1) holds.
Rule for physicists: A tensor is a collection of schemes of coefficients that transform according to the transformation formula for tensors.
(12) Show that $(A, \nabla: A \otimes A \rightarrow A, \eta: \mathbb{K} \rightarrow A)$ is a \mathbb{K}-algebra if and only if A with the multiplication $A \times A \xrightarrow{\otimes} A \otimes A \xrightarrow{\nabla} A$ and the unit $\eta(1)$ is a ring and $\eta: \mathbb{K} \rightarrow \operatorname{Cent}(A)$ is a ring homomorphism into the center of A, where $\operatorname{Cent}(A):=\{a \in A \mid \forall b \in A: a b=b a\}$.

Due date: Tuesday, 06.11.2001, 16:15 in Lecture Hall 138

