Problem set for Advanced Algebra

(5) Let V be a finite dimensional vector space. Let $B = (v_i|i = 1, \ldots, n)$ be a basis of V and $(v_i^*|i = 1, \ldots, n)$ be the dual dual basis of the dual space V^* . Show that $\sum_{i=1}^n v_i \otimes v_i^* \in V \otimes V^*$ does not depend on the choice of the basis B and that

$$\forall v \in V : \quad \sum_{i} v_i^*(v) v_i = v$$

holds.

(Hint: Find an isomorphism $\operatorname{End}(V) \cong V \otimes V^*$ and show that id_V is mapped to $\sum_{i=1}^n v_i \otimes v_i^*$ under this isomorphism.)

(6) (a) Let M_R , $_RN$, M'_R , and $_RN'$ be *R*-modules. Show that the following is a homomorphism of abelian groups:

 $\mu: \operatorname{Hom}_{R}(M, M') \otimes_{\mathbb{Z}} \operatorname{Hom}_{R}(N, N') \ni f \otimes g \mapsto f \otimes_{R} g \in \operatorname{Hom}(M \otimes_{R} N, M' \otimes_{R} N').$

- (b) Find examples where μ is not injective and where μ is not surjective.
- (c) Explain why $f \otimes g$ is a decomposable tensor whereas $f \otimes_R g$ is not a tensor.
- (7) Give a complete proof of Theorem 1.22. In (5) show how $\operatorname{Hom}_T(M, N)$ becomes an S-R-bimodule.
- (8) Find an example of $M, N \in \mathbb{K}$ Mod- \mathbb{K} such that $M \otimes_{\mathbb{K}} N \ncong N \otimes_{\mathbb{K}} M$. (Hint: You may use $\mathbb{K} := L \times L$, $\mathbb{K}M := \mathbb{K}\mathbb{K}$, and $N_{\mathbb{K}} := \mathbb{K}\mathbb{K}$. Define a right \mathbb{K} -structure on M by (m, n)(a, b) := (ma, na)and a left \mathbb{K} -structure on N by (a, b)(r, s) := (br, bs).)

Due date: Tuesday, 30.10.2001, 16:15 in Lecture Hall 138