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(5) Let V be a �nite dimensional vector space. Let B = (viji =
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does not depend on the choice of the basis B and that
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(Hint: Find an isomorphism End(V ) �= V 
 V � and show

that idV is mapped to
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under this isomorphism.)

(6) (a) Let MR, RN , M 0

R
, and RN

0 be R-modules. Show that the
following is a homomorphism of abelian groups:

� : HomR(M;M 0)
ZHomR(N;N
0) 3 f
g 7! f
Rg 2 Hom(M
RN;M

0
RN
0):

(b) Find examples where � is not injective and where � is not
surjective.

(c) Explain why f
g is a decomposable tensor whereas f
Rg

is not a tensor.

(7) Give a complete proof of Theorem 1.22. In (5) show how
HomT (M:;N:) becomes an S-R-bimodule.

(8) Find an example of M , N 2 K - Mod -K such that M 
K N 6�=
N 
K M .
(Hint: You may use K := L � L, KM := KK , and NK := K K .
De�ne a right K -structure on M by (m;n)(a; b) := (ma; na)
and a left K -structure on N by (a; b)(r; s) := (br; bs).)
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