Übungen zu Einführung in die Kategorientheorie

Aufgabe 21. (1) Ein Monoid M heißt rechts $k\ddot{u}rzbar$, wenn für alle $a,b,c\in M$ gilt: aus ac=bc folgt a=b. Jede Gruppe kann als rechts und links kürzbares Monoid angesehen werden.

Zeigen Sie, daß es zu jedem kommutativen kürzbaren Monoid M eine abelsche Gruppe Q(M) und einen Monoidhomomorphismus $\iota:M\to Q(M)$ so gibt, daß zu jeder abelschen Gruppe A und zu jedem Monoidhomomorphismus $f:M\to A$ genau ein Gruppenhomomorphismus $\bar f:Q(M)\to A$ so existiert, daß das folgende Diagramm kommutiert:

(Hinweis: Vgl. Konstruktion der rationalen Zahlen aus den ganzen Zahlen.)

(2) Zeigen Sie, daß es zu jedem kommutativen Monoid M eine abelsche Gruppe Q(M) und einen Monoidhomomorphismus $\iota: M \to Q(M)$ so gibt, daß zu jeder abelschen Gruppe A und zu jedem Monoidhomomorphismus $f: M \to A$ genau ein Gruppenhomomorphismus $\bar{f}: Q(M) \to A$ so existiert, daß $f = \bar{f}\iota$ gilt.

Aufgabe 22. Sei $\mathcal{V}: \mathbf{Top} \to \mathbf{Me}$ der Vergißfunktor. Für $X \in \mathbf{Me}$ sei $\mathrm{Dis}(X) := (X, \mathcal{P}(X))$ der diskrete topologische Raum auf X. Zeigen Sie:

Ist (Y,T) ein beliebiger topologischer Raum und $f:X\to Y$ eine Mengenabbildung, so ist $f:\mathrm{Dis}(X)\to (Y,T)$ stetig, d.h. es gibt genau einen Morphismus $\bar f:\mathrm{Dis}(X)\to (Y,T)$ in **Top** mit $f=\mathcal V(\bar f)=\mathcal V(\bar f)$ id_X.

 $\mathbf{Aufgabe}$ 23. Sei A eine (additive) abelsche Gruppe. Sei

$$Tor(A) := \{ a | a \in A \text{ und es gibt } n \in \mathbb{N}, \ n \neq 0 \text{ mit } na = 0 \},$$

die Torsionsuntergruppe von A. Die Gruppe A heißt torsionsfrei, wenn Tor(A) = 0. Sei Torfr(A) := A/Tor(A) und $\nu : A \to \text{Torfr}(A)$ die kanonische Projektion.

Zeigen Sie: $\operatorname{Torfr}(A)$ ist torsionsfrei, und zu jeder torsionsfreien abelschen Gruppe B und jedem Homomorphismus $f:A\to B$ gibt es genau einen Homomorphismus $\bar{f}:\operatorname{Torfr}(A)\to B$, so daß $f=\bar{f}\nu$. Welches Paar adjungierter Funktoren wird durch dieses universelle Problem beschrieben?

Aufgabe 24. Sei $V \in k$ -Vek. Zeigen Sie, daß der Funktor $\operatorname{Hom}(V, -) : k$ -Vek \longrightarrow Me einen linksadjungierten Funktor besitzt.

Abgabe: Dienstag, den 13.06.2000 11:15 Uhr in der Vorlesung