SYMMETRIC YETTER-DRINFELD CATEGORIES ARE TRIVIAL

BODO PAREIGIS

We show the following theorem answering a question of S. Montgomery and D. Fischman.

Theorem. Let H be a k-Hopf algebra such that the canonical braiding of the category $\mathcal{YD}_{\mathcal{H}}^{\mathcal{H}}$ of Yetter-Drinfeld modules is a symmetry. Then H = k.

Proof. Let M := H with the coregular cooperation of H as the Hcomodule structure $(\delta(h) = \sum h_1 \otimes h_2)$ and with the adjoint operation
of H on itself as module structure $(x \cdot h = \sum S(h_1)xh_2)$. Then M is a
Yetter-Drinfeld module or a crossed module, i.e. a right H-module and
a right H-comodule such that $\sum (x \cdot h)_0 \otimes (x \cdot h)_1 = \sum (x_0 \cdot h_2) \otimes S(h_1)x_1h_3$.

Let N := H with the regular operation of H on itself as module structure $(x \cdot h = xh)$ and the coadjoint cooperation of H as the Hcomodule structure $(\delta(h) = \sum h_2 \otimes S(h_1)h_3)$. Then N is a Yetter-Drinfeld module.

Apply the square of the braiding $\tau(x \otimes y) = \sum y_0 \otimes x \cdot y_1$ to the element $x \otimes 1 \in M \otimes N$ and use the given structures to get $x \otimes 1 = \tau^2(x \otimes 1) = \tau(1 \otimes x) = \sum x_1 \otimes x_2$ for all $x \in H$ hence H = k. \Box

Corollary. For a finite-dimensional Hopf algebra $H \neq k$ the Drinfeld double D(H) is quasitriangular, but not triangular.

References

[M] Susan Montgomery: Hopf Algebras and Their Actions on Rings. CBMS 82, AMS-NSF, 1993.

Mathematisches Institut der Universität, Theresienstr.39, 80333 München, Germany

E-mail address: pareigis@rz.mathematik.uni-muenchen.de

Date: November 27, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 16A10.