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In the study of Lie groups, of algebraic groups or of formal groups, the concept of
Lie algebras plays a central role. These Lie algebras consist of the primitive elements.
It is diÆcult to introduce a similar concept for quantum groups. Many important
quantum groups have braided Hopf algebras as building blocks. As we will see most
primitive elements live in these braided Hopf algebras. In [P1] and [P2] we introduced
the concept of braided Lie algebras for this type of Hopf algebras. In this paper we
will give a survey of and a motivation for this concept together with some interesting
examples.
By the work of Yetter [Y] we know that the category of Yetter-Drinfel'd modules

is in a sense the most general category of modules carrying a natural braiding on
the tensor power of each module (instead of a symmetric structure). The study of
algebraic structures in such a category is a generalization of the study of group graded
algebraic structures. We will describe the braid structure in the category of Yetter-
Drinfel'd modules, the concept of a Hopf algebra in this category, and explain the
reason why we want to study such braided Hopf algebras.
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One of the big obstacles in this theory is the fact, that the set of primitive ele-
ments P (H) of a braided Hopf algebra H does not form a Lie algebra in the ordinary
or slightly generalized sense. We will show, however, that there is still an algebraic
structure on P (H) consisting of partially de�ned n-ary bracket operations, satisfy-
ing certain generalizations of the anti-symmetry and Jacobi relations. We call this
structure a braided Lie algebra. This will generalize ordinary Lie algebras, Lie super
algebras, and Lie color algebras. Furthermore we will show that the universal en-
veloping algebra of a braided Lie algebra is again a braided Hopf algebra leading us
back to quantum groups.
Primitive elements of an ordinary Hopf algebra L are elements x 2 L satisfying

�(x) = x
 1 + 1 
 x. The set of primitive elements P (L) of L forms a Lie algebra
induced by the Lie algebra structure [x; y] := xy � yx on L. In fact one veri�es that
�([x; y]) = [x; y]
 1 + 1
 [x; y] if x; y 2 P (L).
Since primitive elements are cocommutative they can only generate a cocommu-

tative Hopf subalgebra of L. More general elements, skew-primitive elements with
�(x) = x 
 g + g0 
 x, are needed to generate quantum groups or general (non-
commutative noncocommutative) Hopf algebras. But the skew-primitive elements do
not form a Lie algebra anymore.
Many quantum groups are Hopf algebras of the special form L = kG?H = kG
H

where H is a braided graded Hopf algebra over a commutative group G [L, Ma, R, S].
In this situation the primitive elements of H are skew-primitive elements of L. So
the structure of a braided Lie algebra on the set of primitive elements in H induces
a similar structure on a subset of the skew-primitive elements of L.
The central idea leading to the structure of braided Lie algebras is the concept of

symmetrization. For any module P in the category of Yetter-Drinfel'd modules the
n-th tensor power P n of P has a natural braid structure. We construct submodules
P n(�) � P n for any nonzero � in the base �eld k, that carry a (symmetric) Sn-
structure. This is essentially an eigenspace construction for a family of operators. The
Lie algebra multiplications will be de�ned on these Sn-modules P n(�) for primitive
n-th roots of unity �.
In the group graded case, there is a fairly explicit construction of these symmetriza-

tions. In the last section of this paper we describe them in the Cpn-graded case for a
cyclic group of prime power order.
Apart from the explicit examples of braided Lie algebras we gave in [P1] we showed

in [P2] that the set of derivations Der(A) of an algebra A in YDK
K forms a braided Lie

algebra. This is based on the existence of inner hom-objects in YDK
K . In Theorem

6.3 we will show that the category YDK
K is a closed monoidal category. We also

construct another large family of braided Lie algebras consisting of skew-symmetric
endomorphisms of a Yetter-Drinfel'd module with a bilinear form. This generalizes
the construction of Lie algebras of classical groups.
I wish to thank Peter Schauenburg for valuable conversations especially on Theo-

rems 2.2 and 6.3.
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1. Quantum groups, Yetter-Drinfel'd algebras, and G-graded
algebras

Quantum groups arise from deformations of universal enveloping algebras of Lie
algebras. They often have the following form.
Let K = kG be the group algebra of a commutative group. Let H be a Hopf

algebra in the category of Yetter-Drinfel'd modules over K. Then the biproduct
K ? H is a Hopf algebra [R, Ma, FM], which in general is neither commutative
nor cocommutative. More generally quantum groups are Hopf algebras of the form
H� ? K ? H+ where H+ and H� are dual to each other [L, S].
We investigate the question what the primitive (Lie) elements of these quantum

groups are and whether they carry a speci�c structure (of a Lie algebra).
Let us �rst introduce the concept of Yetter-Drinfel'd modules over a Hopf algebra

K with bijective antipode (see [M] 10.6.10). A Yetter-Drinfel'd module or crossed

module over a Hopf algebra K is a vector space M which is a right K-module and a
right K-comodule such that

(1)
X

(x � c)[0] 
 (x � c)[1] =
X

x[0] � c(2) 
 S(c(1))x[1]c(3)

for all x 2M and all c 2 K. Here we use the Sweedler notation �(c) =
P

c(1) 
 c(2)
with � : K �! K 
 K and Æ(x) =

P
x[0] 
 x[1] with Æ : M �! M 
 K. The

Yetter-Drinfel'd modules form a category YDK
K in the obvious way (morphisms are

the K-module homomorphisms which are also K-comodule homomorphisms).
The most interesting structure on YDK

K is given by its tensor products. It is well
known that the tensor product M 
 N of two vector spaces which are K-modules
is again a K-module (via the comultiplication or diagonal of K). If M and N are
K-comodules then their tensor product is also a K-comodule (via the multiplication
of K). If M and N are Yetter-Drinfel'd modules over K, then their tensor product
is a Yetter-Drinfel'd module, too. So with this tensor product YDK

K is a monoidal
category.
A monoidal or tensor product structure on an arbitrary category C allows to de�ne

the notion of an algebra A with a multiplication r : A
A �! A which is associative
and unitary (by u : k �! A). Similarly one can de�ne coalgebras in C. There
is, however, a problem with de�ning a bialgebra or Hopf algebra H in C. In the
compatibility condition between multiplication and comultiplication of H

X
(h � h0)(1) 
 (h � h0)(2) =

X
h(1) � h

0
(1) 
 h(2) � h

0
(2)

one uses in the formation of the right hand side
P

h(1) �h
0
(1)
h(2) �h

0
(2) = (r
r)(1


� 
 1)(
P

h(1) 
 h(2) 
 h0(1) 
 h0(2)) = (r
r)(1
 � 
 1)(�
�)(h
 h0) a switch or
exchange function � : H 
H �! H 
H in the category C.
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There exists such a nontrivial morphism � : M 
 N �! N 
M in the category
YDK

K of Yetter-Drinfel'd modules. It is given by

(2) � : M 
N 3 m
 n 7!
X

n[0] 
m � n[1] 2 N 
M:

This is a natural transformation with the additional property of a braiding which we
will discuss later. So we know now how to de�ne a Hopf algebra H in YDK

K . Observe
that these Hopf algebras are not ordinary Hopf algebras since the condition for the
compatibility between multiplication and comultiplication involves the new switch
morphism.
Given a Hopf algebra H in YDK

K we can de�ne the biproduct K ? H [R] between
K and H. The underlying vector space is the tensor product K 
H. We denote the
elements by

P
ci 
 hi =:

P
ci#hi. The (smash product) multiplication is given by

(3) (c#h)(c0#h0) :=
X

cc0(1)#(h � c0(2))h
0

and the (smash coproduct) comultiplication is given by

(4) �(c#h) =
X

(c(1)#(h(1))[0])
 (c(2)(h(1))[1]#h(2)):

If K is a Hopf algebra and H is a Hopf algebra in YDK
K then K 
H becomes a Hopf

algebra with this multiplication and comultiplication, called the biproduct K ?H (see
[R, M, Ma]).
We will be mainly interested in the case where K = kG is the group ring of

a commutative group. It is well known that the kG-comodules are precisely the G-
graded vector spaces ([M] Example 1.6.7). We denote this category byMkG. From the
comodule structure on a G-graded vector spaceM = �h2GMh we can construct a kG-
module structure such that M becomes a Yetter-Drinfel'd module. This construction
depends on a bicharacter � : G�G �! k� given by a group homomorphism� : G
ZG
�! k�. Then it is easy to verify that M is in YDkG

kG with the kG-module structure

mh � g := �(h; g)mh

for homogeneous elements mh 2Mh, h 2 G and g 2 G. So any bicharacter � de�nes
a functor MkG �! YDkG

kG . This functor preserves tensor products. In particular any
algebra or coalgebra inMkG is also an algebra resp. coalgebra in YDkG

kG . SinceM
kG

can be considered as a monoidal subcategory of YDkG
kG via � and thus has a switch

map � : M 
 N �! N 
M we can also de�ne Hopf algebras in MkG and they are
also preserved by the functor induced by �. In this situation � turns out to be simply

� (mh 
 ng) = �(h; g)ng 
mh:

Although one may de�ne Yetter-Drinfel'd categories YDK
K for arbitrary Hopf al-

gebras K with bijective antipode hence in particular for arbitrary group rings kG
(where G is not commutative) the above functor that induces Yetter-Drinfel'd mod-
ules from kG-comodules with a bicharacter can only be constructed for commutative
groups G.
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If A is an algebra in MkG then kG#A carries the induced algebra structure

(5) (g#ah)(g
0#ah0) = gg0#�(h; g0)ahah0 :

If H is a Hopf algebra in MkG then the Hopf algebra L = kG ? H has the comulti-
plication

(6) �L(g#ah) =
X

k2G

(g#bk)
 (gk#bhk�1)

if �H(ah) =
P

k2G bk
bhk�1 where lower indices stand for the degree of homogeneous
elements.

Example 1.1. Let G = C3 = hti be the cyclic group with three elements, generator
t, and let �(t; t) = � 2 k be a primitive 3-rd root of unity. Then H = k[x]=(x3) with
�(x) = x
 1 + 1
 x is a Hopf algebra in YDkG

kG where x has degree t, the generator
of C3.
To see that k[x]=(x3) is a Hopf algebra in YDkG

kG we check that �(x3) = �(x)3.
We observe that (x 
 1)(1 
 x) = x 
 x but (1 
 x)(x 
 1) = �x 
 x. So we have
�(x)3 = (x
1+1
x)3 = x3
1+(1+�+�2)(x
x2)+(1+�+�2)(x2
x)+(1
x3) =
0 = �(0) = �(x3).
This example shows, that products and powers of primitive elements behave totally

di�erent in YDkG
kG from how they behave in Vec, the category of vector spaces. This

new behavior is central to the following observations on Lie algebras.
The biproduct kC3 ? k[x]=(x3) is isomorphic to the Hopf algebra kht; xi=(t3 �

1; x3; xt� �tx) if we associate t#1 and t resp. 1#x and x.

2. Skew primitive elements

The last example shows the importance of elements x 2 H (a Hopf algebra in
YDK

K ) with �(x) = x
1+1
x. These elements are called primitive elements. They
act like derivations. The primitive elements, homogeneous of degree g 2 G, form a
vector space Pg(H). In [P1] (after the proof of 3.2) and [P2] Lemma 5.1 we proved

Lemma 2.1. The set of primitive elements of a Hopf algebra H in YDK
K is a Yetter-

Drinfel'd module P (H).
If K = kG and H 2 MkG then P (H) =

L
g2G Pg(H) is also in MkG (via the same

bicharacter �).

In general and especially in Hopf algebras of the form K ? H we have to consider
more general conditions for primitive elements. An element g 6= 0 in a Hopf algebra
L (in Vec) is called a group-like element if

�(g) = g 
 g:

This implies "(g) = 1. By (4) a group-like element g 2 K de�nes a group-like element
g#1 2 L = K ? H.
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Let g; g0 2 L be group-like elements. An element x 2 L is called a (g0; g)-primitive

element or a skew primitive element if

�(x) = x
 g + g0 
 x:

This implies "(x) = 0. Observe that a primitive element is (1; 1)-primitive, since 1 is
a group-like element.
The (g0; g)-primitive elements form a vector space P(g0;g)(L). For x 2 P(g0;g)(L) we

have

�(g0
�1
x) = (g0

�1

 g0

�1
)(x
 g + g0 
 x) = g0

�1
x
 g0

�1
g + 1 
 g0

�1
x;

so we get an isomorphism P(g0;g)(L) 3 x 7! g0�1x 2 P(1;g0�1g)(L). Thus it suÆces to
study the spaces P(1;g)(L).
If f : L �! L0 is a Hopf algebra homomorphism then f obviously preserves

group-like elements g 2 L and (g0; g)-primitive elements x 2 L are mapped into
(f(g0); f(g))-primitive elements f(x) 2 L0. So we get a homomorphism f : P(g0;g)(L)
�! P(f(g0);f(g))(L

0) and in particular a homomorphism f : P(1;g)(L) �! P(1;f(g))(L
0).

Now let L = K ?H and let h 2 H be primitive and homogeneous of degree g 2 K,
a group-like element in K, i.e. �H(h) = h
1+1
h and Æ(h) =

P
h[0]
h[1] = h
 g

with respect to the K-comodule structure Æ : H �! H 
K of H. Then by (6)

�L(1#h) = 1#h
 g#1 + 1#1 
 1#h

hence 1#h 2 P(1;g)(L). So the following is a monomorphism

Pg(H) 3 h 7! 1#h 2 P(1;g)(L):

Theorem 2.2. Let K be a Hopf algebra with bijective antipode and H be a Hopf

algebra in YDK
K . Let L = K ? H. For every group-like element g 2 K we have

P(1;g)(L) = P(1;g)(K)#1� 1#Pg(H):

Proof. Let � : K ? H �! K be de�ned by �(c#h) = c"H(h) and � : K �! K ? H by
�(c) = c#1. Then one checks easily that � and � are Hopf algebra homomorphisms
and that �� = idK. Thus � and � preserve group-like elements and skew-primitive
elements. In particular we have for any group-like element g 2 K that �(g) = g#1 2 L
is group-like. We identify the group-like elements g in K with the group-like elements
�(g) in L. For any (1; g)-primitive element x 2 L the element �(x) 2 K is also
(1; g)-primitive. Furthermore � and � de�ne a direct sum decomposition K ? H =
Im(�)�Ker(�).
We have already seen 1#Pg(H) � P(1;g)(L). Furthermore if c 2 P(1;g)(K) then

�(c) = c#1 2 P(1;g)(L) so that P(1;g)(L) � P(1;g)(K)#1 + 1#Pg(H).
Given a (1; g)-primitive element x 2 L = K ? H for g 2 K. We study how x

decomposes with respect to the direct sum decomposition x = ��(x) + (x � ��(x)).
The element �(x) is (1; g)-primitive since x is (1; g)-primitive. So ��(x) 2 P(1;g)(L)#1.



SKEW-PRIMITIVE ELEMENTS OF QUANTUM GROUPS AND BRAIDED LIE ALGEBRAS 7

Furthermore ��(x) 2 P(1;g)(L) implies y := x � ��(x) 2 P(1;g)(L) \ Ker(�). We
have �L(y) = y 
 g + 1 
 y and (� 
 1)�L(y) = 1 
 y, since y 2 Ker(�). Let
y =
P

c#h 2 L = K ? H then

1 
 y = (� 
 1)�L(y) = (� 
 1)(
P
(c(1)#(h(1))[0])
 (c(2)(h(1))[1]#h(2)))

=
P

c(1)"H((h(1))[0])
 c(2)(h(1))[1]#h(2):

We apply 1 
 "K#1 and get
P

1#"K(c)h = (1
 "K#1)(
P

1
 c#h)
=
P

c(1)"K(c(2))#"H((h(1))[0])"K((h(1))[1])h(2) =
P

c#h;

so we know

y = x� ��(x) = 1#h

for some h 2 H.
Since y is skew-primitive we get 0 = "L(y) = "H(h). Furthermore �L(y) = y
 g+

1
 y = 1#h 
 g#1 + 1#1
 1#h =
P
(1#(h(1))[0])
 ((h(1))[1]#h(2)) implies

h
 g#1 + 1H 
 1K#h =
X

(h(1))[0] 
 (h(1))[1]#h(2)

so that by applying 1 
 "#1 we get h
 1 + 1 
 h =
P

h(1) 
 h(2) = �H(h). i.e. h is
primitive. Furthermore with 1
 1#" we get h
 g =

P
h[0]
 h[1] = Æ(h) where Æ : H

�! H 
K is the given comodule struktur of H. Thus h is homogeneous of degree g
so that

x� ��(x) 2 1#Pg(H):

So we have shown P(1;g)(L) � P(1;g)(K)#1� 1#Pg(H). �

Corollary 2.3. Let G be a commutative group, � be a bicharacter of G. Let H be a

Hopf algebra in MkG. Let L = kG ? H. For every g 2 G we have

P(1;g)(L) = k(g � 1)#1� 1#Pg(H):

Proof. The only thing to check is P(1;g)(kG) = k(g � 1). We have �(g � 1) =
g 
 g � 1 
 1 = (g � 1) 
 g + 1
 (g � 1). Conversely if x =

P
�igi is in P(1;g0)(kG)

then by comparing coeÆcients one obtains x = �0(g0 � 1). �

In particular we have P(1;1)(kG ? H) = 1#P1(H).
In order to study the (g0; g)-primitive elements in L = kG 
 H it suÆces now to

study P (H). We are interested in obtaining an algebraic structure on P (H) similar
to the Lie algebra structure on the primitive elements of an ordinary Hopf algebra
in Vec. The usual Lie multiplication on P (H) induced by the multiplication of the
Hopf algebra H in YDkG

kG cannot be used as the following example shows.

Example 2.4. Let x; y 2 P (H) and H a Hopf algebra in YDK
K . If we de�ne [x; y] :=

xy �r� (x
 y) then

�H[x; y] = [x; y]
 1 + 1 
 [x; y] + x
 y � � 2(x
 y):
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So in general the element [x; y] 2 H will not be a primitive element unless � 2(x
y) =
x
 y.

However, in Example 1.1 we found the fact that x3 may be primitive if x is primitive.

3. Symmetrization of Bn-modules

We want to �nd a reasonable algebraic structure (of a generalized Lie algebra) on
the set of primitive elements of a Hopf algebra in the category YDK

K of Yetter-Drinfel'd
modules. We also want to get a generalized Lie algebra from every (noncommutative)
algebra A in YDK

K by suitable de�nition of Lie multiplications with the help of the
algebra multiplication. We expect that the Lie products are (skew-)commutative and
satisfy some kind of Jacobi identity. The (skew-)commutativity of an ordinary Lie
algebra P results from the action of S2 (the symmetric group) on P 
P . In the case
of an algebra A made into a Lie algebra this skew-commutativity results from the
following composition of maps

[:; :] = rÆ SkSymm : A
A �! SkSymm(A
A) �! A

where SkSymm denotes the set of anti-symmetric tensors in A 
 A and the anti-
symmetrization process itself. In general the Lie multiplication must only be de�ned
on SkSymm(P 
 P ) since

[x; y] = [x
 y] =
1

2
[x
 y � y 
 x]

where 1
2
(x
 y � y 
 x) 2 SkSymm(P 
 P ).

This is a special case of the following more general observation. If a �nite group
G acts on a module M then the map M 3 m 7!

P
g2G gm 2 G-Inv(M) sends any

m 2M into the set of G-invariant elementsG-Inv(M) = fm 2M j8g 2 G : gm = mg:
This process is only possible for �nite groups G. In the above case S2 acts on P
P by
�(x
y) = �y
x. We want to use this process to de�ne a generalized Lie algebra. We
will not restrict ourselves to binary multiplications, since the Jacobi identity indicates
that higher order multiplications might be of interest, too. Furthermore generalized
Lie multiplications will only be partially de�ned, on subspaces of P 
 : : :
 P .
The reason for the fact that the Lie bracket [x; y] of two primitive elements x; y 2

P (H) is not primitive in Example 2.4 results from the following observation. The
operation of the switch map � : P 
 P �! P 
 P induces only an operation of the
group Zrather than Z=(2) on P 
 P . Observe that Z= B2 is the 2-nd braid group,
whereas Z=(2) = S2 is the 2-nd symmetric group.
The switch morphism � : P 
 P �! P 
 P satis�es the (quantum-) Yang-Baxter

equation

(� 
 1)(1 
 � )(� 
 1) = (1
 � )(� 
 1)(1 
 � )

hence it induces the action of the n-th braid group Bn on P n. The braid group Bn is
generated by elements �1; : : : ; �n�1 (�i acting on P n by switching the i-th and (i+1)-st
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component) and has relations

�i�j = �j�i for ji� jj � 2;
�i�i+1�i = �i+1�i�i+1:

So the n-th symmetric group Sn with generators �1; : : : ; �n�1 is a canonical quotient
of Bn (by �i 7! �i) by � 2i = id. This observation is the reason that � is called a
braiding for the category YDK

K .
Any Sn-module is a Bn-module by the residue homomorphism Bn �! Sn. Con-

versely, is there a way to construct an Sn-module from a given Bn-module in a canon-
ical way? Why do we want to consider Sn-modules rather than Bn-modules? The
main reason is, as we saw above, that Bn is an in�nite group and Sn is a �nite group.
The �rst question leads to the process of symmetrization of a Bn-module or braid

module as follows. Any element � 2 k� induces an algebra automorphism � : kBn

�! kBn by �(�i) := � � �i, due to the fact that the relations for the braid group
are homogeneous. The algebra homomorphism �� : kBn �! kBn �! kSn induces a
forgetful functor kSnM�! kBnM which has the right adjoint HomkBn(kSn;�) : kBnM
�! kSnM. So any braid moduleM and any � 2 k� induces a module HomkBn(kSn;M)
over the symmetric group. Since the algebra homomorphism �� is surjective we get
a submodule

M(�) := HomkBn(kSn;M) � HomkBn(kBn;M) = M:

In [P2] following De�nition 2.3 we proved

M(�) = fm 2M j��1� 2i �(m) = �2m 8� 2 Bn; i = 1; : : : ; n� 1g

and computed the action of Sn on M(�) as

(7) �i(m) = ��1�i(m):

So we have kSn-submodules M(�) � M for every � 2 k�. Since they are con-
structed similar to eigenspaces for the eigenvalues �2 they form direct sums in M .
If P 2 YDK

K then P n = P 
 : : : 
 P is in YDK
K and Bn acts on P n. The sym-

metrization with respect to � 2 k� gives a module P n(�) 2 YDK
K ([P2] Theorem

2.5).
Now we consider the special case K = kG and a G-graded vector space M 2 MkG

for a commutative group G with a bicharacter � : G 
Z G �! k�. As we saw in
the �rst section M can be considered as a Yetter-Drinfel'd module in YDkG

kG . The
space M decomposes into homogeneous componentsM = �g2GMg. The components
themselves are again Yetter-Drinfel'd modules, since Mg is G-graded.
Assume that M is in YDkG

kG and that Bn operates on M by morphisms in the cat-
egory YDkG

kG . Then Bn operates also on the homogeneous components Mg. Since
M(�) is a Yetter-Drinfel'd module it decomposes into homogeneous components
M(�)g = Mg(�).
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Let P 2 MkG and
P

xg1
 : : :
xgn 2 P n be an element with the xgi homogeneous
of degree gi 2 G. Then the action of � 2i 2 Bn looks particularly simple

� 2i (
X

xg1 
 : : :
 xgn) = �(gi+1; gi)�(gi; gi+1)(
X

xg1 
 : : :
 xgn):

One shows that the element
P

xg1
 : : :
xgn is in P
n(�) i� �(gj; gi)�(gi; gj)(

P
xg1


: : :
xgn) = �2(
P

xg1 
 : : :
xgn) for all i 6= j. This implies �(gj; gi)�(gi; gj) = �2 for
all i 6= j, if the given element is not zero. In [P2] Proposition 7.2 we proved

Proposition 3.1. Let � 2 k� be given. Then

P n(�) =
M

f(g1;:::;gn) �-familyg

Pg1 
 : : :
 Pgn:

Here (g1; : : : ; gn) is called a �-family if �(gi; gj)�(gj; gi) = �2 for all i 6= j.

Example 3.2. We close this section with some important examples.
1. If G = f0g then �(0; 0) = 1 and YDkG

kG
�= Vec. The braiding in Vec is the usual

switch map � (x
 y) = y 
 x hence � 2 = id. If M is a Bn-module then the equation
��1� 2i �(m) = �2m has a non-trivial solution only if � = �1. Hence P n(�) = 0 for all
� 6= �1. So the only nontrivial "symmetrization" is P n(1) = P n(�1) = P n. Since
� 2 = id the braid group Bn acts on P n by ordinary permutations generated by the
action of the canonical switch map. If � 2 Bn and � its canonical image in Sn then
the action (7) given by the symmetrization on z 2 P n is �(z) = sgn(�)�(z), where �
is acting as ordinary switch permutation.
2. Let G =Z=2Z= f0; 1g the cyclic group of order two with the (only) nontrivial

bicharacter �(i; j) = (�1)ij . Then MkG is the category of (2-graded) super vector
spaces with the braiding � (xi
 yj) = (�1)ijyj 
 xi. Again � 2 = id so that P n(�) = 0
for all � 6= �1. The only symmetrization is P n(1) = P n(�1) = P n.
3. Let G be an arbitrary �nite abelian group with bicharacter � such that �(h; g) =

�(g; h)�1. Then MkG is the category of (G-graded) color vector spaces with the
braiding � (xh
 yg) = �(h; g)yg
xh. Again � 2 = id so that P n(�) = 0 for all � 6= �1.
The only symmetrization is P n(1) = P n(�1) = P n.
4. The �rst interesting example is G = Z=3Z= f0; 1; 2g with the bicharacter

�(i; j) = �ij where � is a primitive 3-rd root of unity. Then MkG is the category of
3-graded vector spaces with the braiding � (xi 
 yj) = �ijyj 
 xi. The homogeneous
elements m 2 P n(�) =

L
f(g1;:::;gn) � -familyg Pg1 
 : : : 
 Pgn for P 2 MkG have to

satisfy ��1� 2�(m) = �2ijm = �2m. The possibilities for � are 1;�1; �;��; �2;��2. By
computing all possible �-families we get for example

(P 
 P )(�1) = (P 
 P0) + (P0 
 P );

(P 
 P 
 P )(�) = (P1 
 P1 
 P1)� (P2 
 P2 
 P2);

P 6(��) = P 6
1 � P 6

2 ;

(P 
 P 
 P )(�2) = 0;

P 6(��2) = 0:
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The particular choice of the number of tensor factors in this example will become clear
in the next section. The action of the symmetric group on these symmetrizations is

�(xi 
 yj) = �yj 
 xi;

�1(x1 
 y1 
 z1) = y1 
 x1 
 z1;

i.e. the ordinary permutation { and this holds for all elements in S3 and also for
elements in P2 
 P2 
 P2,

�1(x1 
 y1 
 z1 
 u1 
 v1 
 w1) = �y1 
 x1 
 z1 
 u1 
 v1 
 w1:

4. Lie algebras

Let P be a Yetter-Drinfel'd module in YDK
K . Then P

n(�) is an Sn-module. We will
have to consider morphisms [ ] : P n(�) �! P in YDK

K . If we suppress the summation
index and the summation sign then we may write the bracket operation on elements
z = x1 
 : : :
 xn 2 P n(�) as [x1; : : : ; xn] := [z]. Furthermore we de�ne

(8) x�(1) 
 : : :
 x�(n) := ��1(z)

Observe that the components x1; : : : ; xn in these expressions are interchanged and
changed according to the action of the braid group resp. the symmetric group on
P n(�), so x�(1)
 : : :
 x�(n) is only a symbolic expression, not the usual permutation
of the tensor factors given by the permutation of the indices.
We need another submodule of P n whose special properties will not be investigated.

De�ne

P n+1(�1; �) := P 
 P n(�) \ fz 2 P n+1j8� 2 Sn : (1 
 �)�1� 21 (1 
 �)(z) = zg:

Since this is a kernel (limit) construction in YDK
K , P

n+1(�1; �) is again an object in
YDK

K .
For z = x
y1
 : : :
yn 2 P n+1(�1; �) we write y1
 : : :
yi�1
x
yi
 : : :
yn :=

�i�1 : : : �1(z). If the morphisms [ ]n : P n �! P and [ ]2 : P 2 �! P are suitably de�ned
then we write

(9) [y1; : : : ; [x; yi]; : : : ; yn] := [:; [:; :]2; :]n�i�1 : : : �1(z):

Now we have the tools to give the de�nition of a braided Lie algebra.

De�nition 4.1. A Yetter-Drinfel'd module P together with operations in YDK
K

[:; :] : (P 
 : : :
 P )(�) = P n(�) �! P

for all n 2 N and all primitive n-th roots of unity � 6= 1 is called a braided Lie algebra

or a Lie algebra in YDK
K if the following identities hold:

(1) ("anti"-symmetry) for all n 2 N, for all primitive n-th roots of unity � 6= 1,
for all � 2 Sn, and for all z 2 P n(�)

[z] = [�(z)];
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(2) (1. Jacobi identity) for all n 2 N, for all primitive n-th roots of unity � 6= 1,
and for all z = x1 
 : : :
 xn+1 2 P n+1(�)

n+1X

i=1

[xi; [x1; : : : ; x̂i; : : : ; xn+1]] =
n+1X

i=1

[:; [:; :]](1 : : : i)(z) = 0;

where we use notation (8) (and where (1 : : : i) is a cycle in Sn),
(3) (2. Jacobi identity) for all n 2 N, for all primitive n-th roots of unity � 6= 1,

and for all z = x
 y1 
 : : :
 yn 2 P n+1(�1; �) we have

[x; [y1; : : : ; yn]] =
nX

i=1

[y1; : : : ; [x; yi]; : : : ; yn]

where we use notation (9).

Observe that the bracket operations are only partially de�ned and should not be
considered as multilinear operations, since P n(�) � P n is just a submodule in YDK

K

and does not necessarily decompose into an n-fold tensor product. The elements in
P n(�) are, however, of the form z =

P
k xk;1 
 : : :
 xk;n.

Clearly the braided Lie algebras in YDK
K form a category LYDK

K . Before we inves-
tigate its properties we discuss some examples.

Example 4.2. 1. If G = f0g as in Example 3.2.1. then the only required morphism
for a braided Lie algebra P is [ ] : P 2(�1) �! P since �1 is a primitive 2-nd root of
unity. This is the usual bracket operation of Lie algebras. The action of B2 on P 
P
is given by the canonical switch map � (x
y) = y
x. The induced action of S2 with
respect to � = �1 is then

�(x
 y) = �y 
 x

by (7). Thus axiom 1. gives [x; y] = [�(x
 y)] = �[y; x]; the usual anti-symmetry
relation. With this action of S2 on P 2(�1) = P 
P one gets the usual Jacobi identity
from both braided Jacobi identities.
2. Let G = Z=2Z= f0; 1g with the nontrivial bicharacter �(i; j) = (�1)ij. In

Example 3.2.2. we saw that the only non-trivial symmetrization occurs with respect
to � = �1, a primitive 2-nd root of unity. So the only bracket is de�ned on (P 

P )(�1) = P 
P . The operation of B2 on P 
P is the braid action and �(xi
 yj) =
(�1)(�1)ijyj 
 xi. So we get [xi; yj] = [�(xi 
 yj)] = �[yj; xi] if at least one of the
degrees i or j is zero and we get [x1; y1] = [�(x1
 y1)] = [y1; x1]. In this case we get
the notion of Lie super algebras since the braided Jacobi identities translate to the
Jacobi identity for Lie super algebras.
3. Let G be an arbitrary �nite abelian group with bicharacter � such that �(h; g) =

�(g; h)�1. Again we get only one bracket operation [ ] : P
P �! P and anti-symmetry
and Jacobi identities translate to those for Lie color algebras.
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4. The example G = Z=3Z= f0; 1; 2g with bicharacter �(i; j) = �ij where � is a
primitive 3-rd root of unity has three bracket operations

[ ] : P 2(�1) = (P 
 P0) + (P0 
 P ) �! P;
[ ] : P 3(�) = (P1 
 P1 
 P1)� (P2 
 P2 
 P2) �! P;

[ ] : P 6(��) = P 6
1 � P 6

2 �! P:

Here the 1. Jacobi identity means for example

[x1; [x2; x3; x4]] + [x2; [x1; x3; x4]] + [x3; [x1; x2; x4]] + [x4; [x1; x2; x3]] = 0;

and the 2. Jacobi identity

[x; [y1; y2; y3]] = [[x; y1]; y2; y3] + [y1; [x; y2]; y3] + [y1; y2; [x; y3]]:

Further explicit examples of braided Lie algebras can be found in [P1].

5. Properties of Lie algebras

The de�nition of braided Lie algebras, although it generalizes the notion of the
known Lie algebras, Lie super algebras, and Lie color algebras, gains its interest from
the properties that these Lie algebras have. We cite some of these properties in brief.

Theorem 5.1. ([P2] Corollary 4.2) Let A be an algebra in YDK
K . Then A carries the

structure of a Lie algebra AL with the symmetric multiplications

[{] : An(�) �! A de�ned by [z] :=
X

�2Sn

rn�(z):

for all n 2 N and all roots of unity � 6= 1 in k�.

This de�nes a functor {L : AYDK
K �! LYDK

K from the category AYDK
K of algebras

in YDK
K to LYDK

K .
In [P2] Theorem 5.3 we proved

Theorem 5.2. For any algebra A the morphism p : A 3 a 7! a
 1 + 1 
 a 2 A
A
is a Lie algebra homomorphism in YDK

K .

An easy consequence of this theorem is

Theorem 5.3. ([P2] Corollary 5.4) Let H be a Hopf algebra in YDK
K . Then the set

of primitive elements P (H) forms a Lie algebra in YDK
K .

This de�nes a functor P : HYDK
K �! LYDK

K from the category HYDK
K of Hopf

algebras in YDK
K to LYDK

K . This is the most interesting result which solves the
question for the algebraic structure of the primitive elements of a Hopf algebra in
YDK

K . In particular the braided Lie brackets live also on the set of skew primitive
elements K ? H as partially de�ned operations.

Theorem 5.4. The functor {L : AYDK
K �! LYDK

K has a left adjoint U : LYDK
K

�! AYDK
K , called the universal enveloping algebra.

Theorem 5.5. ([P2] Theorem 6.1) The universal enveloping algebra U(P ) of a

braided Lie algebra P is a Hopf algebra in YDK
K .
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This de�nes a left adjoint functor U : LYDK
K �! HYDK

K to P : HYDK
K �! LYDK

K .

Example 5.6. The one dimensional vector space kx considered as a Z=3Z-graded
space with x of degree 1 2 G = Z=3Z= f0; 1; 2g is a braided Lie algebra in YDkG

kG

with [x
x
x] = 0 and [x
x
x
x
x
x] = 0. The universal enveloping algebra
of kx is k[x]=(x3), the Hopf algebra discussed in Example 1.1.

6. Derivations and skew-symmetric endomorphisms

We shall give two examples which show how to construct large families of Lie
algebras from Yetter-Drinfel'd algebras and from Yetter-Drinfel'd modules with a
bilinear form in a similar way as one does for classical Lie algebras.
For this purpose we need inner hom-objects in YDK

K . Let V;W be Yetter-Drinfel'd
modules in YDK

K . Then Hom(V;W ) is a right K-module by

(10) (fh)(v) = f(vS�1(h(2)))h(1):

This is equivalent to

(11) (fh(1))(vh(2)) = f(vh(3)S
�1(h(2)))h(1) = f(v)h;

i.e. the evaluation Hom(V;W )
 V �! W is a K-module homomorphism.
We de�ne a map Æ0 : Hom(V;W ) �! Hom(V;W 
K) by

(12) Æ0(f)(v) := f(v[0])[0] 
 f(v[0])[1]S(v[1])

that \dualizes" the right module structure on Hom(V;W ).
Let hom(V;W ) be the pullback (in Vec) in the diagram

hom(V;W ) Hom(V;W )
K-Æ1

Hom(V;W ) Hom(V;W 
K)-Æ0?

�

?

j

hom(V;W ) thus can be written as

(13)
hom(V;W ) = ff 2Hom(V;W )j9

P
f0 
 f1 2 Hom(V;W )
K8v 2 V :P

f0(v)
 f1 =
P

f(v[0])[0] 
 f(v[0])[1]S(v[1]) = Æ0(f)(v)g

Lemma 6.1. hom(V;W ) is a K-comodule.

Proof. Since K is faithfully at we get that

hom(V;W )
K Hom(V;W )
K 
K-Æ1 
K

Hom(V;W )
K Hom(V;W 
K)
K-Æ0 
K?

�
K

?

j 
K
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again is a pullback. So we get a uniquely determined homomorphism Æ : hom(V;W )
�! hom(V;W )
K such that

hom(V;W )

Æ

@
@
@
@@R

(1
�)Æ1

XXXXXXXXXXXXXXXXXz
Æ1

B
B
B
B
B
B
B
B
B
BBN

hom(V;W )
K Hom(V;W )
K 
K-Æ1 
K

Hom(V;W )
K Hom(V;W 
K)
K-Æ0 
K?

�
K

?

j 
K

commutes. To show that the outer diagram commutes we compute

((Æ0 
 1)Æ1(f))(v) = (Æ0 
 1)(f0 
 f1)(v)
= (Æ0(f0))(v)
 f1
= f0(v[0])[0] 
 f0(v[0])[1]S(v[1])
 f1
= f(v[0])[0] 
 f(v[0])[1]S(v[2])
 f(v[0])[2]S(v[1])
= f(v[0])[0] 
�(f(v[0])[1]S(v[1]))
= ((1
�)Æ1(f))(v)

hence (Æ0 
 1)Æ1(f) = (1 
�)Æ1(f). Since Æ1 = (� 
K)Æ and (Æ1 
K)Æ = (1 
�)Æ1
we get for the induced map Æ the equality (�
K 
K)(Æ
K)Æ = (1
�)(�
K)Æ =
(� 
K 
K)(1 
�)Æ and thus (Æ 
K)Æ = (1 
�)Æ. Consequently hom(V;W ) is a
K-comodule. �

Lemma 6.2. hom(V;W ) is a Yetter-Drinfel'd module.

Proof. We �rst show that hom(V;W ) is a K-module. Let f 2 hom(V;W ) and h 2 K.
Then

(14) Æ0(fh) = j(f0h(2) 
 S(h(1))f1h(3))

since

Æ0(fh)(v) = (fh)(v[0])[0] 
 (fh)(v[0])[1]S(v[1])
= (f(v[0]S

�1(h(2)))h(1))[0] 
 (f(v[0]S
�1(h(2)))h(1))(1)S(v[1])

= f(v[0]S
�1(h(4)))[0]h(2) 
 S(h(1))f(v[0]S

�1(h(4)))[1]h(3)S(v[1])
= f(v[0]S

�1(h(4)))[0]h(2) 
 S(h(1))f(v[0]S
�1(h(4)))[1]h(3)S(v[1])S(h(5))h(6)

= f(v[0]S�1(h(4)))[0]h(2) 
 S(h(1))f(v[0]S�1(h(4)))[1]S(S(S�1(h(5)))v[1]S�1(h(3)))h(6)
= f((vS�1(h(3)))[0])[0]h(2) 
 S(h(1))f((vS

�1(h(3)))[0])[1]S((vS
�1(h(3)))[1])h(4)

= f0(vS�1(h(3)))h(2) 
 S(h(1))f1h(4)
= (f0h(2))(v)
 S(h(1))f1h(3)

Thus fh 2 hom(V;W ) by de�nition of hom(V;W ). So hom(V;W ) is a K-submodule
of Hom(V;W ). Furthermore (14) shows also that hom(V;W ) is a Yetter-Drinfel'd
module. �
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Theorem 6.3. The category of Yetter-Drinfel'd modules YDK
K is a closed monoidal

category.

Proof. It suÆces to show for a homomorphism g : X 
 V �! W in YDK
K that the

induced map ~g : X �! Hom(V;W ) factors through a Yetter-Drinfel'd homomorphism
�g : X �! hom(V;W ). We have

Æ0(~g(x))(v) = ~g(x)(v[0])[0] 
 ~g(x)(v[0])[1]S(v[1])
= g(x
 v[0])[0] 
 g(x
 v[0])[1]S(v[1])
= g(x[0] 
 v[0])
 x[1]v[1]S(v[2])
= ~g(x[0])(v)
 x[1]
= j(~g(x[0])
 x[1])(v)

or Æ0(~g(x)) = j(~g(x[0]) 
 x[1]) so that ~g(x) 2 hom(V;W ) which de�nes a homomor-
phism �g : X �! hom(V;W ). Furthermore this proves Æ(�g(x)) = �g(x[0]) 
 x[1] =
(�g 
 1)Æ(x) which shows that �g : X �! hom(V;W ) is a comodule homomorphism.
Finally we have

�g(xh)(v) = g(xh
 v)
= g(xh(1) 
 vS�1(h(3))h(2))
= g((x
 vS�1(h(2)))h(1))
= g(x
 vS�1(h(2)))h(1)
= �g(x)(vS�1(h(2)))h(1)
= (�g(x)h)(v)

so that �g(xh) = �g(x)h, i.e. �g is a Yetter-Drinfel'd homomorphism. �

We denote the evaluation map corresponding to id 2 Hom(hom(V;W );hom(V;W ))
by # : hom(V;W )
 V �! W .
Now we consider derivations on algebras A in YDK

K . A derivation from A to A is
a linear map (d : A �! A) 2 hom(A;A) such that

d(ab) = d(a)b+r(1
 #)(� 
 1)(d 
 a
 b)

for all a; b 2 A. Observe that in the symmetric situation this means d(ab) = d(a)b+
ad(b).

Lemma 6.4. Let A be an algebra in YDK
K . Then the set

Der(A) := fd 2 hom(A;A)jd(ab) = d(a)b+r(1
 #)(� 
 1)(d
 a
 b)8a; b 2 Ag

is a Yetter-Drinfel'd module in YDK
K .

In fact Der(A) is the kernel in YDK
K of the morphism in Hom(end(A);hom(A 


A;A)) �= Hom(end(A)
A
A;A) given by #(1
r)�r(#
1)�r(1
#)(�
1)). It is
easily checked that Der(A) together with its operation on A is the universal derivation
module on A, i.e. module M in YDK

K together with an operation # : M 
 A �! A
such that (1
r)# = r(#
 1) +r(1
 #)(� 
 1).

Theorem 6.5. ([P2] Corollary 5.6) The Yetter-Drinfel'd module of derivations

Der(A) of an algebra A is a Lie algebra.
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Now let V be in YDK
K with inner endomorphism object A := end(V ). Given a bilin-

ear form h:; :i : V 
V �! k in YDK
K . We collect the set g of skew-symmetric endomor-

phisms f 2 end(V ) for which in principle the following hold: hf(v); wi = �hv; f(w)i
for all v;w 2 V . Since there is a switch between f and v in these expressions the
correct condition is

hf(v); wi = �
X

hvi; fi(w)i

where � (f 
 v) =
P

vi 
 fi resp.

�(#
 1)(f 
 v 
w) = ��(1 
 #)(� 
 1)(f 
 v 
 w:

Thus g is the di�erence kernel of two morphisms in YDK
K . Hence g is an (universal)

object satisfying the diagrammatic condition

r r
� � � �

g gV V V V
=�

Theorem 6.6. For a Yetter-Drinfel'd module V 2 YDK
K with bilinear form � = h:; :i :

V 
V �! k the Yetter-Drinfel'd module g of skew-symmetric endomorphisms is a Lie

subalgebra of end(V )L in YDK
K .

Proof. We give a diagrammatic proof where we use the multiplication r : g 
 g

�! A = end(V ) and the fact that the evaluation # : g 
 V �! V of g on V is
associative with respect to this multiplication. For the n-fold multiplication we write
rn : gn �! A. Let �n : gn �! g

n be given by �2 := �g
g, �n+1 = (�n 
 1)�g
gn . Then

�(#
 1)(rn 
 1
 1) = (�1)n�(1 
 #)(� 
 1)(rn�n 
 1
 1):

We prove this by induction. For n = 1 this is the de�ning condition for g. The
induction step is

� �

� �
� �
� � � �

� �

� � � �

r
r

r

r

rn

A

g g
n
V V

A

g g
n
V V

A

g g
n
V V

A

g g
n
V V

= = = =(�1) (�1)
� �

� �= (�1)n+1 A

g g
n
V V

=

r
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� �
� �

� �

� �

� �

r r
r

= (�1)n+1
�n

A

g g
n
V V

=(�1)n+1
�n
A

g g
n
V V

= (�1)n+1
rn+1�n+1

A

g
n+1

V V

In the �rst and the last term we indicated the multiplication rn : gn �! A resp.
rn+1 : gn+1 �! A. Furthermore we indicated the use of �n where appropriate.

Now let � be a primitive n-th root of unity and z 2 g
n(�). Then �

n(n�1)
2 = (�1)n�1

and �n(z) = �
n(n�1)

2 �n(z) by (7) and the de�nition of �n, where �n is the image of �n
under the canonical map Bn �! Sn. So we get

�(#
 1)([z]
 v 
 w) =
=
P

� �(#
 1)(rn�(z)
 v 
 w)
=
P

�
�(#
 1)(rn 
 1
 1)(�(z)
 v 
 w)

= (�1)n
P

�
�(1 
 #)(� 
 1)(rn�n 
 1
 1)(�(z)
 v 
 w)

= (�1)
P

�
�(1 
 #)(� 
 1)(rn 
 1
 1)(�n�(z)
 v 
 w)

= (�1)�(1 
 #)(� 
 1)([z]
 v 
 w);

hence [z] 2 g. Thus g is a Lie subalgebra of end(V ). �

7. Lie structures on Cpn-graded modules

In this section we assume that G = Cpt = Z=(pt) is the cyclic group with pt

elements where p 6= 2 is prime and that the �eld k has characteristic 6= 2 and contains
a pt-th primitive root of unity �. We want to get information on the nontrivial
symmetrizations of G-comodules.
A bicharacter � : G 
ZG �! k� is uniquely de�ned by the value of �(1; 1) as

�(i; j) = �(1; 1)ij 2 k. Since Z=(pt)
ZZ=(pt) �=Z=(pt) this amounts to a homomor-
phism ' : Z=(pt) 3 g 7! �g 2 k� for some element � 2 k�. Such a homomorphism
has a unique image factorization Z=(pt) �! Z=(ps) �! k� with g 7! g 7! �g with the
second homomorphism injective. Then � has order ps so it is a primitive ps-th root of
unity. Without loss of generality we may assume s = t and � a primitive pt-th root
of unity.
We wish to compute the �-symmetrization (P 
 : : :
 P )(�) = P n(�) where P is a

G =Z=(pt)-graded vector space and � is an n-th primitive root of unity (with n > 1)
so that we can determine the domain of the possible Lie multiplications.
To determine P n(�) =

L
f(g1;:::;gn)�-familyg Pg1 
 : : :
 Pgn (Proposition 3.1) we have

to �nd the �-families (g1; : : : ; gn) in G i.e. families with �(gi; gj)
2 = �2 for all i 6= j.

Since �(gi; gj) has order pr for some r, there is only a restricted choice for the primitive
root of unity � and for the arity of the possible Lie multiplication on P .
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We have n > 1 and � 2 k� a primitive n-th root of unity. We wish to determine
all �-families (g1; : : : ; gn) of elements in G = Z=(pt) satisfying �(gi; gj)2 = �2 or
�2gigj = �2 for all i 6= j. This amounts to �gigj = "� with " = �1. In the case " = +1
we get � = �gigj 2 Im('). Hence the order of � is n = pt

0

and � = �b for b 2 Z=(pt).
In the case " = �1 we get �� = �gigj 2 Im(') (and � =2 Im(') since p is odd). Hence
the order of � is n = 2pt

0

and � = ��b for b 2 Z=(pt). Together this says � = "�b has
order n = (32 �

1
2")p

t0 for " = �1.
If t0 = 0 then � = �1. If � = 1 then we get the trivial case P 1(1) = P . If � = �1

the primitive 2-nd root of unity, then (g1; g2) is a �-family i� it satis�es �(g1; g2) = 1
(the value �1 is not possible) i� g1g2 � 0(pt).
Assume now that t0 > 0 hence b 6= 0. Then there are n > 2 components gi in a

�-family (g1; : : : ; gn). Choose representatives gi 2 N with 0 < gi < pt. Observe that
gi 6= 0 since b 6= 0 and b � gigj(pt). So we can write gi = nip

ri with (ni; p) = 1 and
0 � ri < t and b = qps with (q; p) = 1 and 0 � s < t.
We have gigj � b(pt) for all i 6= j hence ninjpriprj � qps(pt). Since gigj 6= 0 in

Z=(pt) we get ri+rj < t hence ri+rj = s for all i 6= j. Thus ri = r for all i = 1; : : : ; n
and s = 2r < t. Since b = qps has order pt�s in Z=(pt) we get t0 = t � 2r and
n = (3

2 �
1
2")p

t�2r.
Finally we have gi(gj � gk) = ni(nj � nk)p2r � 0(pt) hence nj � nk � 0(pt�2r) or

ni � nj(p
t�2r);8i 6= j

and b � ninip
2r(pt). It is easy to check that any family (g1; : : : ; gn) satisfying these

equations is a �-family. This proves the following

Theorem 7.1. Let p 6= 2 be a prime and t � 1. Then the (�1)-families (g1; g2) are

those with g1g2 � 0(pn).
For any choice of

� r such that 0 � 2r < t,
� " 2 f+1;�1g,
� m 2 f1; : : : ; pn � 1g with (m; p) = 1,

there are �-families (g1; : : : ; gn) with � = "�b, b � m2p2r(pn), and n = (32 �
1
2
")pt�2r.

The gi can be chosen as gi � mpr + aip
t�r(pn) with ai 2 f0; : : : ; pr � 1g.

These are all families on which a Lie multiplication can be de�ned.

Example 7.2. 1. Let p = 3 and t = 1. Then there is the (�1)-symmetrization

P 2(�1) = P0 
 P + P 
 P0;

since g1g2 � 0(3) i� one of the factors gi is zero. To get all other symmetrizations
observe that r = 0 hence b � g1g1 � 1(3). So there are 2 cases � = � and n = 3 or
� = �� and n = 6. The corresponding possible �-families are (1; 1; 1) and (2; 2; 2)
resp. (1; 1; 1; 1; 1; 1) and (2; 2; 2; 2; 2; 2) hence

P 3(�) = P1 
 P1 
 P1 � P2 
 P2 
 P2
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and
P 6(��) = P1 
 P1 
 P1 
 P1 
 P1 
 P1

�P2 
 P2 
 P2 
 P2 
 P2 
 P2:

2. Let p = 3 and t = 2. Then P 2(�1) = P0 
 P + P 
 P0 + (P3 + P6)
 (P3 + P6).
For larger �-families the only choice for r is r = 0. Since m 2 f1; 2; 4; 5; 7; 8g we get
b 2 f1; 4; 7g. We get families with 9 or 18 elements gi and these elements must all be
equal, gi 2 f1; 2; 4; 5; 7; 8g.
3. Let p = 3 and t = 3. We consider the families of length > 2. There are two

choices for r 2 f0; 1g. So we get families with 3, 6, 27, and 54 elements. For the
choice r = 1, m = 4, " = +1 the �9-families (g1; g2; g3) are composed of gi = 4�3+ai �9
with ai 2 f0; 1; 2g. There is for example the �9-family (3; 12; 21). So any braided Lie
algebra P in MkG with G =Z=(27) has a Lie operation [ ] : P3 
 P12 
 P21 �! P9.
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