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Abstract. We study direct product decompositions of objects in a �nitely complete and cocom-
plete category with zero object and certain axioms for a coimage factorization of morphisms.
Direct products C = A�B can be characterized by "inner" properties of C and its subobjects A
and B. We also show that the Fitting Lemma and the Krull-Schmidt Theorem hold.
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1 Introduction

Let C be a category with �nite limits, �nite colimits, and a 0-object such that the
following axioms are satis�ed:

(I) for every morphism f : A �! B, the induced (and uniquely determined)
morphism g in the commutative diagram

A A
`
B-jA B�jB

A A�B�
pA B-pB

?

id

?

id

?

HHHHHHHHj

��������� g
0 f

is a di�erence cokernel;

(II) if, in the commutative diagram

A C-
f

B

@
@
@R

g

�
�
��

f is a di�erence cokernel and g has kernel 0 then g is an isomorphism.
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Axiom I guarantees that A�B is the "span" of the subobjects g(A) and g(B).
In the category of sets A

`
B = A _[B is too small for this purpose, but in the

presence of algebraic structures very often A
`
B will become large enough. If f

is the zero morphism, then we shall use the notation A [ B = A � B to denote
that A �B is spanned by A and B.

As we shall see later on axiom I has the consequence that certain morphisms
in C can be added. Axiom II means that C is in some sense balanced (cf. a mono-
and epimorphism is an isomorphism).

Two fundamental examples areGr the category of groups andMo the category
of monoids. Gr satis�es (I) and (II) as will be seen soon in more general contexts,
whereas Mo does not satisfy any of (I) or (II). A counterexample for (I) is A =
B = (N0;+) and f = id. It is easy to see that (1; 0) =2 Im(g), and g is surjective if
and only if g is a di�erence cokernel. To give a counterexample for (II) adjoin an
additional element1 to (N0;+) such that n+1 =1+n = n+1 and1+1 = 2.
Then N0[f1g is a monoid and f : N0[f1g �! N0 with f(n) = n and f(1) = 1
is surjective (a di�erence cokernel) with kernel 0. But f is not bijective.

To �nd a larger class of categories C which satisfy the hypotheses, let us consider
an (equationally de�ned) algebraic category C. The �nal object E is always the
set with one element with the unique algebra structure on it. In order to be a
0-object in C it is necessary and suÆcient that, for any algebra A in C, there is
a unique algebra morphism E �! A; this means that there must be precisely
one 0-ary operation in the theory for C (and it must be compatible with all other
operations on A in the obvious sense). Let us call the distinguished element 0 for
every algebra A. Assume that there is an m-ary operation ! : A � : : :� A �! A
for some m � 2 and i � m, such that for every algebra A

1. 8a 2 A : !(0; : : : ; a; : : : ; 0) = a (a is in the i-th place),

2. 8a; a0 2 A9a1; : : : ; am 2 A : !(a1; : : : ; a
0; : : : ; am) = a (a0 is in the i-th place).

Then axiom I is satis�ed. To prove this let f : A �! B be an algebra morphism
and let (a; b) 2 A�B be given. By de�nition of g we have gjA(a) = (a; f(a)) 2 A�
B and gjB(b) = (0; b) 2 A�B. Pick b1; : : : ; bm such that !(b1; : : : ; f(a); : : : ; bm) =
b, then g(!(jB(b1); : : : ; jA(a); : : : ; jB(bm))) = !((0; b1); : : : ; (a; f(a)); : : : ; (0; bm)) =
(!A(0; : : : ; a; : : : ; 0); !B(b1; : : : ; f(a); : : : ; bm)) = (a; b): Thus g is surjective which
in an algebraic category means the same as g is a di�erence cokernel ([2], 3.4 Cor.
4).

If there is a binary operation � such that �(a; b) = 0 if and only if a = b, then
C also satis�es (II). To prove this let g : B �! C have kernel zero then g(b) =
g(b0)) 0 = �(g(b); g(b0)) = g(�(b; b0))) �(b; b0) = 0) b = b0, hence g is injective.
However, in an algebraic category a bijective morphism is an isomorphism.

In particular all algebraic categories where the objects have an underlying group
structure and no further distinguished elements satisfy our conditions for C, e.g.
rings (without unit elements), associative rings, Lie rings etc. The binary operation
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� can be chosen to be �(a; b) = a � b. Similarly the category of loops ("non-
associative" groups) satisfy the conditions for C.

We will show that certain generalizations of the Fitting Lemma and the Krull-
Schmidt Theorem hold in our categories. Instead of considering congruence rela-
tions as in [3] or a modular lattice of subobjects as in [1] we use speci�c subobjects
together with certain endomorphisms to prove these theorems.

2 Complements and internal direct products

Let C satisfy the axioms discussed in section 1. We are interested in the question,
whether inside an object A�B in C there can be other "subobjects" X of A�B
such that X � B = A � B. For this we have to make precise what the equality
means and how A and B are subobjects of A � B. A subobject will be used
in the sense of [2], that is as a representative of the usual equivalence class of
monomorphisms.

In the following de�nition pA : A �B �! A (resp. pB : A� B �! B) denotes
the canonical projection.

De�nition 2.1 1. A subobject �X : X ,! A�B is called a weak complement of
B, if the morphism X

�X�! A �B
pA�! A has kernel 0 �! X .

2. A subobject �X : X ,! A � B is called a complement of B, if the morphism
X

�X�! A �B
pA
�! A is an isomorphism.

3. U is called internal direct product of the subobjects A ,! U and B ,! U if

a) A ,! U and B ,! U are kernels,

b) the intersection of A and B is A \ B = 0,

c) the canonical morphism A
`
B �! U is a di�erence cokernel (a fact

which we abbreviate by A [B = U).

Let A and B be objects in C. We consider B as a subobject of A � B via the
canonical morphism e�B : B �! A�B induced by id : B �! B and 0 : B �! A.

Lemma 2.2 B
e�B�! A �B

pA�! A is a kernel diagram.

Proof: If g : X �! A�B is given with pAg = 0 then pAg = pAe�BpBg = 0 and
pBg = pBe�BpBg implies g = e�BpBg, a factorization of g through e�B. Since e�B is a
section this factorization is unique.

Proposition 2.3 �X : X ,! A � B is a weak complement of B if and only if
X \ B = 0.
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Proof: Let X be a weak complement of B. In the commutative diagram

X \B B-
uB

0 X- A�B-�X A;-pA

�
�

�
�	 ?

uX

?
e�B 0
@
@
@R

with uB and uX the canonical morphisms, we have pA�XuX = 0 hence there is a
factorization � of uX through 0 by the property of weak complements. Since uX
is a zero-morphism and a monomorphism we get X \ B = 0.

Let X \B = 0. In the commutative diagram

0 X-

B A�B-e�B A-
pA

Ke(f)

g

HHHHHHj

@
@
@R

h

A
A
A
A
A
A
AAU ? ?

�X f
@
@
@R

B
e�B�! A�B

pA�! A is a kernel diagram by Lemma 2.2. Hence h can be constructed
uniquely from g such that e�Bh = �Xg. Now g can be factored through 0 and thus
must be zero. This means that X is a weak complement of B.

Proposition 2.4 Let �X : X ,! A�B be a subobject. The following are equivalent:

1. X is a complement of B.

2. There is a unique morphism f : A �! B and an epimorphism g : A �! X
such that the diagram

A A� B�
pA B-pB

A

id

�
�

�
�	

f

@
@
@
@R

X
?g

?�X

commutes.

3. The induced morphism h in the commutative diagram

X X �B�pX
B-

p0B

A A� B�pA
B-

pB

A� B
?�X

?pA ?

h

?

id
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is an isomorphism.

Proof: (1), (2): pA�X is an isomorphism if and only if there is an epimorphism
g with (pA�X)g = id. Thus f can be constructed uniquely such that f = pB�Xg.

(1) ) (3): If pA�X is an isomorphism then, obviously, h is an isomorphism.
(3) ) (1): Let h be an isomorphism. In the commutative diagram

A A�B-e�A

X X � B�pX

A A�B�pA

?pXh
�1e�A

A�B
?�X

?pA

?h�1

?

h

we have pAe�A = id. Hence (A �! X �! A) = id in the above diagram. Thus
it suÆces to show that pA�X is a monomorphism. Suppose that pA�Xf = pA�Xg.
Then we have the commutative diagram

�
�

�
�	

�
�

�
�	

g

f

Y

?

ef
?

eg 0

@
@
@
@R

X X �B�
pX B-

p0B

A A� B�pA
B-

pB
?

pA�X

?

h

?

id

De�ne ef and eg by the universal property of the product X�B. Then pAh ef = pAheg
and pBh ef = 0 = pBheg and hence h ef = heg and ef = eg since h is an isomorphism.
So f = g and pA�X is a monomorphism.

Remark 2.5 1) In some sense 2.4, (3), means that A � B is generated by the
subobjects X and B. Observe, however, that there is also a canonical morphism
X
`
B �! A�B which, in general, does not factor through X�B in the canonical

way (e.g. Gr) nor is it an epimorphism (e.g. commutative monoids).
2) In 2.4, (2), one can consider X as the graph of the morphism f : A �! B.

So this part of Proposition 2.4 may be rephrased as:
there is a bijection between the complements of B in A�B and the morphisms

f : A �! B.
To show that each f determines a subobject X of A�B, let ef : A �! A�B be

the morphism with pA ef = id and pB ef = f . Then (A; ef) is a subobject of A � B,
namely the graph of f .
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Proposition 2.6 Let �X : X �! A � B be a complement of B. Then we have
X \ B = 0 and X [B = A� B.

Proof: Since a complement is a weak complement we get X \ B = 0 by
Proposition 2.3. In the commutative diagram

A A
`
B- B�

X X
`
B-jX B�

A A�B�pA
B-

pB

?

�=

?

�=

?

�=

?

?

=

?

=�X

@
@
@
@R

�
�

�
�	

the morphism A
`
B �! A � B is a di�erence cokernel by axiom (I) and so is

X
`
B �! A�B. Hence X [ B = A� B.

Theorem 2.7 1. A�B is an internal direct product of the subobjects A and B.

2. If A and B are subobjects of U such that U is an internal direct product of A
and B, then there is an isomorphism U �= A �B such that

U

A
��
�*

B
HH

HY

?

�=

A� B

HHHj
����

commutes.

Proof: (1) Since pAe�A = id is an isomorphism, A is a complement of B in
A�B. Thus by Lemma 2.2 and Proposition 2.6 we get that A�B is an internal
direct product of A and B.

(2) Given an internal direct product U of A and B. Let U �! X be the
cokernel of A �! U . Then A �! U is the kernel of U �! X since it was a kernel.
In the commutative diagram

0 B-

A U- X-

Ke(f)
HHHHHHj

@
@
@R

A
A
A
A
A
A
AAU ? ?

f
@
@
@R
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the morphism Ke(f) �! A and Ke(f) �! 0 exist since A �! U is the kernel of
U �! X and 0 = A \B is a pull-back. Hence Ke(f) = 0. Now let

P U-
g

B X-
f

? ?

be a pull-back and consider the commutative diagrams

(*) P U-
g

B X-
f

B

�B

HHHHHHj

@
@
@R

id

A
A
A
A
A
A
AAU ? ?

P U-
g

B X:-f

A

�A

HHHHHHj

@
@
@R

0

A
A
A
A
A
A
AAU ? ?

They induce the canonical morphism A
`
B �! P �! U , which is a di�erence

cokernel. Since Ke(f) = 0 the diagram

P U-
g

B X-
f

Ke(g)
HHHHHHj

@
@
@R

? ? ?
0 = Ke(f) -

commutes and the canonical morphism Ke(g) �! P is the zero morphism. By
axiom (II) g is an isomorphism. Thus we can replace P by U and g by id so that

there is a factorization U �! B
f
�! X of U �! X , which is the cokernel of

A �! U .
Since (A �! U �! X) = 0 and Ke(f) = 0 we get (A �! U �! B) = 0

and hence a factorization (U �! X �! B) = (U �! B). Since U �! X is

the cokernel of A �! U we get (X �! B
f
�! X) = id. Now f has kernel zero

and is a di�erence cokernel of (B
f
�! X �! B;B

id
�! B). Hence by axiom

(II) we obtain that f : B �! X is an isomorphism. Therefore we may replace
X by B and consider U �! B as cokernel of A �! U . Furthermore we have
(B �! U �! B) = id by diagram (�). Analogously we get a morphism U �! A,
which is a cokernel of B �! U , such that (A �! U �! A) = id.
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Now we prove U �= A�B. Let Y be the kernel of h in the following commutative
diagram

A Y� B-

A U� B-

A A�B� B-

?

=

? ?

=

?

=

?

h

?

=

@
@
@
@R

�
�

�
�	

To prove the existence of Y �! A observe that A �! U is the kernel of U �! B
and that (Y �! U �! B) = (Y �! U �! A � B �! B) = 0. Thus we get a
commutative diagram

0 A-

B U-

Y
HHHHHHj

@
@
@R

A
A
A
A
A
A
AAU ? ?

as A \B = 0. This shows that (Y �! U) = 0. Thus h : U �! A� B has kernel
0. On the other hand we have a commutative diagram

A U- B�

A A�B� B-

A
`
B

�
�
�
��

@
@

@
@I

@
@
@
@R

�
�

�
�	?

=

?

h

?

=

?

which implies by axiom (I) that A
`
B �! U �! A� B is a di�erence cokernel.

By axiom (II) h is an isomorphism and the above diagram proves that the diagram
in the theorem commutes.

3 Summable morphisms

In this paragraph we shall introduce an addition of certain morphisms. One of the
aims is the proof of a formula id = e�ApA+ e�BpB for A�B. Let C be as in sections
1 and 2.
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De�nition 3.1 Let � : A
`
A �! A � A be the canonical morphism de�ned by

the commutative diagram

A A
`
A-j1 A�j2

A A �A�
p1 A-p2

?

id

?

id

?

HHHHHHHHj

��������� �
0 0

By axiom (I) � is a di�erence cokernel. Let f; g 2 C(A;B). f and g are called
summable if the canonical morphism h of

A A
`
A- A�

B

fHHHj ?h g����

factors (necessarily uniquely) through �. The factorization morphism A�A �! B
will be written as hf; gi.

A similar de�nition can be given for n morphisms. The family (fiji = 1; : : : ; n)
is summable if for all i; j with 1 � i < j � n the morphism induced by the
fi; fi+1; : : : ; fj factors through

`j

k=iA �!
Qj

k=iA. The factorization is denoted
by hfi; fi+1; : : : ; fji : A � : : :� A �! B.

If (fiji = 1; : : : ; n) is summable then the sum f1 + : : :+ fn is de�ned as the

morphism A
�n

�! A� : : :�A
hf1;:::;fni
�! B:

Lemma 3.2 Let fi 2 C(A;B), i = 1; : : : ; n, h 2 C(B;C) and k 2 C(D;A). Let
(fiji = 1; : : : ; n) be summable. Then (fikji = 1; : : : ; n) and (hfiji = 1; : : : ; n) are
summable and we have h(f1 + : : :+ fn) = hf1 + : : :+ hfn and (f1 + : : :+ fn)k =
f1k + : : :+ fnk:

Proof: It is suÆcient to prove that factorizations hhf1; : : : ; hfni resp.
hf1k; : : : ; fnki exist. Observe that the factorization hf1; : : : ; fni is the only mor-
phism which makes all the diagrams

A An-e�i
fi
HHHj

B
?hf1;:::;fni

commute. Thus the diagrams

A An-e�i
A� �n

B

fi
HHHHj

����� f1+:::+fn

C

hfi

@
@
@
@
@@R

g

�
�

�
�

��	

?
hf1 ;:::;fni

?
h
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commute with hhf1; : : : ; hfni = hhf1; : : : ; fni and hf1 + : : :+ hfn = g = h(f1 +
: : :+ fn): The second part follows from the commutative diagrams

D Dn-e�i
D� �n

A An-e�i
A� �n

?
k

?
kn

?
k

fi

Q
Q
Q
QQs

C
?

hf1;:::;fni
f1+:::+fn

�
�

�
��+

by hf1; : : : ; fnik
n = hf1k; : : : ; fnki and (f1 + : : :+ fn)k = f1k + : : :+ fnk.

Lemma 3.3 Sums of summable morphisms satisfy the associative law. In partic-
ular if (f1; f2; f3) 2 C(A;B)3 is summable then (f1 + f2) + f3 = f1 + f2 + f3 =
f1 + (f2 + f3):

Proof: We prove only the second statement. The �rst follows by standard
reasoning. Consider the following commutative diagram

A A�A-e�21
A� e�22

A� A A�A �A-e�31;1

A

?

�

�

PPPPPPPPPPPPq ?

��id e�33
���������

hf1 ;f2i

Q
Q
Q
Q
Q
Qs

f1+f2

HHHHHHHHHHHHHHHHHHHj

f3

�
�

�
�

�
�

�
�

��	
B
?

hf1;f2 ;f3i

where the composite vertical morphism denotes (f1+f2)+f3 (and also f1+f2+f3
in case the diagram commutes). The morphisms e�2 are morphisms into A2 and e�3
into A3. The only commutativity which is not immediately clear is hf1; f2; f3ie�31;1 =
hf1; f2i, but we have hf1; f2; f3ie�31;1e�21 = hf1; f2; f3ie�31 = f1 = hf1; f2ie�21 and similarly
hf1; f2; f3ie�31;1e�22 = hf1; f2ie�22. By the uniqueness of the factorization hf1; f2i we get
the required commutativity.

Lemma 3.4 For each morphism f 2 C(A;B) the morphisms 0 and f are summable
and we have 0 + f = f = f + 0.
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Proof: It is suÆcient to prove 0+id = id for then 0+f = 0f+id f = (0+id)f =
id f = f by Lemma 3.2. But the factorization h0; idi is p2 : A�A �! A since

A A �A-e�1 A�e�2

A

0

@
@
@
@R ?

p2 id

�
�

�
�	

commutes by de�nition of e�1 and e�2. Hence 0 + id = h0; idi� = p2� = id.

Proposition 3.5 Let U = A1 � : : :�An. Then idU = e�1p1 + : : :+ e�npn.

Proof: To begin the proof by induction assume U = A�B. The diagram

U U � U-e�1 U�e�2

A A �B = U-e�A A�e�B?

pA

?

pB

?

pA�pB

commutes, whence pA � pB = he�ApA; e�BpBi and idU = (pA � pB)� = e�ApA + e�BpB.
To indicate the induction step assume V = A � B � C = U � C. Then idV =
e�UpU + e�CpC = e�U idU pU + e�CpC = e�U(e�UApUA + e�UBpUB)pU + e�CpC = e�Ue�UApUApU +
e�Ue�UBpUBpU + e�CpC = e�ApA + e�BpB + e�CpC .

Example 3.6 We want to prove in the case C = Gr, the category of groups, that
two morphisms f; g : A �! B are summable if and only if f(x)g(y) = g(y)f(x)
for all x; y 2 A. Given hf; gi we have hf; gi(x; y) = hf; gi((x; e) � (e; y)) =
hf; gi(x; e) � hf; gi(e; y) = f(x) � g(y). Since (x; e) and (e; y) commute we get
f(x)g(y) = g(y)f(x). Conversely it is a well-known exercise that this condi-
tion implies that hf; gi is a homomorphism. The sum f + g is then de�ned by
(f + g)(x) = f(x)g(x).

4 Idempotent morphisms and the Fitting Lemma

First we need some facts about coimages. The coimage of f : A �! B is de�ned
as the di�erence cokernel of the kernel pair of f ([2] p.70, Lemma 4a)). In the

canonical factorization A
f 0

�! Coim(f)
�

�! B of f , � fails to be a monomorphism
in general.
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12 Bodo Pareigis and Helmut R�ohrl

Lemma 4.1 Given f : A �! B and g : B �! C, then there is a unique morphism
k : Coim(gf) �! Coim(g) such that

A B-
f

C-
g

Coim(gf) Coim(g)-k
?

@
@
@
@R

6

��
��

��
��*

commutes. If f is an isomorphism then so is k.

Proof: This is an easy exercise in universal properties of di�erence cokernels
and kernel pairs.

One proves just as easily

Lemma 4.2 Given g : A �! B and f : B �! C, there is a unique morphism
k : Coim(g) �! Coim(fg) such that

A B-
g

C-
f

Coim(g) Coim(fg)-k
?�
�
�
�� 6HHHHHHHHj

commutes. If f is an isomorphism then so is k.

De�nition 4.3 Let f : A �! A be idempotent. We say that f satis�es condition
(Gf) if the canonical morphism Ke(f)

`
Coim(f) �! A is a di�erence cokernel

and Coim(f) �! A is a kernel.

In the category of groups Gr the �rst condition is always satis�ed, indeed
a 7! af(a�1) � f(a) 2 Ke(f)

`
Coim(f) is a section for the given morphism. The

second condition is in Gr equivalent to f being normal (see 4.7). In Mo, the
category of monoids, let M = (Z=3Z)� be the multiplicative monoid of Z=3Z and
f : M �! M be given by f(0) = 0, f(1) = f(2) = 1. Then f is idempotent and
Ke(f)

`
Coim(f) �! M is surjective. But Coim(f) �! M fails to be a kernel.

To see this observe that Coim(f) = f0; 1g and the kokernel of Coim(f) �!M is
M �! f1g. The kernel of this morphism is id : M �! M , but not Coim(f) �!
M .

Now let C be again as in section 1.

Lemma 4.4 Let f : A �! A be idempotent with (Gf). Then A = Ke(f) �
Coim(f):
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Proof: Ke(f) �! A and Coim(f) �! A are kernels. Furthermore (Gf) implies
A = Ke(f) [ Coim(f). Next we show Ke(f)\ Coim(f) = 0. In the diagram

A Coim(f)-f
0

A-�

�

@
@
@
@R

A
?

f

we have �f 0 = f = f2 = f�f 0 hence � = f�, since f 0 is an epimorphism. In the
commutative diagram

Ke(f)\ Coim(f) Ke(f)-

Coim(f) A-�
A-

f
?

j

?

0

@
@
@
@R

we have �j = f�j = 0 hence Ke(f)\Coim(f) = 0. Hence Theorem 2.7 �nishes the
proof.

Let f : A �! A be an endomorphism. Then f has a factorization A
f 0

�!
Coim(f)

�
�! A. By Lemma 4.1 there is also a canonical morphism

�n : Coim(fn) �! Coim(fn�1) and by Lemma 4.2 there is a canonical morphism
f 0n : Coim(fn�1) �! Coim(fn).

De�nition 4.5 An endomorphism f : A �! A is called bounded, if the families
(�n : Coim(fn) �! Coim(fn�1)) and (f 0n : Coim(fn�1) �! Coim(fn)) become sta-
tionary (i.e. there is n0 such that for all n � n0 both �n and f 0n are isomorphisms),
and if for each n there is r � n such that Ke(f r)

`
Coim(f r) �! A is a di�erence

cokernel and Coim(f r) �! A is a kernel.

Proposition 4.6 (Fitting Lemma) Let f : A �! A be bounded. Then for every
n0 2 N there is an n � n0 such that

A = Ke(fn)� Coim(fn):

Proof: The chains (�n) and (f
0
n) become stationary for all n � n0. In particular

we have an inverse (f 0n�n)
�n of (f 0n�n)

n. The morphism

' : A �! Coim(fn)
(f 0n�n)

�n

�! Coim(fn) �! A
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is idempotent which follows from the commutative diagram

A A� fn

Coim(fn) Coim(fn)-(f 0n�n)
�n

A A� fn

A�
fn

Coim(fn) Coim(fn)-
(f 0n�n)

�n

A A�
fn

?

?

?

?

?

?

?

?

id

@
@
@
@
@
@
@
@
@@R

@
@
@
@
@
@
@
@
@@R

id

in which '2 : A �! A is easily identi�ed. The diagonal Coim(fn) �! Coim(fn)
is the identity and gives a commutative lower triangle since A �! Coim(fn) is an

epimorphism. Thus A �! Coim(fn) �! Coim(fn)
id
�! Coim(fn) �! A in the

diagram is '.
The only remaining problem is the commutativity of the rectangles. It follows

from the diagram

A A� fn�1

Coim(fn) Coim(fn)�

A A� fn�1

A� f

Coim(fn�1)�
f 0n

Coim(fn)��n

A� f

?

?

?

?

?

?

HHHHHHj

HHHHHHj

where the left part is an (n� 1)-fold repetition of the right part and the right part
commutes by Lemma 4.1 and Lemma 4.2 with g = fn�1.

For suitably large n we have also Coim(fn) �! A a kernel. De�ne '0 := (A �!

Coim(fn)
(f 0n�n)

�n

�! Coim(fn)). Since (f 0n�n)
�n is an isomorphism, we have that

'0 : A �! Coim(fn) is a coimage of fn as well as of ' = (A
'0

�! Coim(fn) �! A).
Thus Coim(') �! A is a kernel and Ke(') = Ke(A �! Coim(')) = Ke(A �!
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Coim(fn)) = Ke(fn). Since f is bounded, ' satis�es (G') and Lemma 4.4 holds
for '. Translated back into terms of f gives the required result.

Example 4.7 Consider the category of groups Gr. A morphism f : G �! G
is called normal if f(aba�1) = af(b)a�1 for all a; b 2 G. If f is normal and G
has a.c.c. and d.c.c. then for all n we have fn(aba�1) = afn(b)a�1 and thus
Coim(fn) = Im(fn) normal in G. The chains of subgroups Ke(fn) � Ke(fn+1)
and Im(fn) � Im(fn+1) become stationary. Finally a 7! a(f 0n�n)

�1fn(a�1) �
(f 0n�n)

�1fn(a) is a section for the canonical map Ke(fn)
`
Im(fn) �! G. Thus f

is bounded and the Fitting Lemma holds.

5 The Krull-Schmidt-Theorem

De�nition 5.1 Let A 6= 0 be in C. We call A indecomposable if A = X�Y implies
X = 0 or Y = 0.

Lemma 5.2 Let A be indecomposable and f : A �! A a bounded endomorphism.
Then f is either nilpotent or an automorphism.

Proof: By the Fitting Lemma there is an n 2 N such that A = Ke(fn) �
Coim(fn). If Coim(fn) = 0 then fn = 0 and f is nilpotent. If Ke(fn) = 0
then Coim(fn) �! A must be the identity. Hence fn : A �! A has kernel zero
and is a di�erence cokernel. By axiom (II) for C we get that fn and also f are
automorphisms.

De�nition 5.3 Given A = B � C. We de�ne the subset X � End(B) of A-
productive endomorphisms as follows:

1. If A = B0 � C0 then (B �! A �! B0 �! A �! B) 2 X .

2. If f; g 2 X , then fg 2 X .

3. If f 2 X \ Aut(B), then f�1 2 X .

4. If f; g 2 X are summable then f + g 2 X .

5. X = the smallest set satisfying (1); : : : ; (4).

De�nition 5.4 A is bounded if for all A = B�C all A-productive endomorphisms
f are bounded.

Lemma 5.5 Let B be indecomposable and A = B � C be bounded. Let f; g be
A-productive and summable. If f and g are nilpotent, then so is f + g.
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Proof: Without loss of generality we assume f 6= 0 6= g. Since f + g is
A-productive it is bounded. By Lemma 5.2 f + g is either nilpotent or an auto-
morphism. Assume f + g 2 Aut(B). Then h = (f + g)�1 is A-productive and so
are hf and hg. Thus id = h(f +g) = hf +hg with hf and hg A-productive, hence
bounded. Since f is nilpotent, there is an n such that fn 6= 0 and f �fn = 0. So fn

factors through Ke(f) �! B and we get Ke(f) 6= 0. This implies that Ke(hf) 6= 0
and thus hf is not an automorphism. By Lemma 5.2 hf is then nilpotent. Replac-
ing f by hf and g by hg we can assume without loss of generality that f and g
are summable, A-productive and nilpotent with id = f + g.

Let fn = 0 = gn. We prove by induction on k that f t1gf t2g : : :gf tk = 0 for
ti � 0 and

Pk

i=1 ti = n. For k = 1 this is trivial. Using Lemma 3.2 and Lemma
3.4 the induction step is f t1g : : :gf tk+1 = f t1g : : : gf tkff tk+1 + f t1g : : : gf tkgf tk+1 =
f t1g : : :gf tk(f + g)f tk+1 = f t1g : : : gf tkf tk+1 = 0: With this remark we get (f +
g)2n = 0 since in the expansion each summand contains at least n factors f or n
factors g, so it is zero. Thus f + g = id cannot hold with B 6= 0.

Corollary 5.6 Let A = B�C be bounded and B be indecomposable. Let f1; : : : ; fn
2 End(B) be summable and A-productive. If f1 + : : :+ fn = id then one of the fi
is an automorphism.

Proof: If all fi are nilpotent then a simple induction proof shows that f1 +
: : :+ fn is nilpotent. So one of the fi cannot be nilpotent, and hence it must be
an automorphism.

Theorem 5.7 (Krull-Schmidt) Let

A = A1 � : : :� Am = B1 � : : :�Bn

be two decompositions of A into internal direct products of indecomposable subob-
jects Ai resp. Bj. Let A be bounded. Then m = n and Ai

�= Bi for all i and a
suitable reordering of the Bis.

Proof: We prove the following statement by induction for t � min(m;n).
P (t): there is a reordering of B1; : : : ; Bn such that Ai

�= Bi for i = 1; : : : ; t and
A = A1 � : : :� At � Bt+1 � : : :�Bn.

P (0) holds by hypothesis. Assume that P (t � 1) holds. Then A = A1 � : : : �
At�1 � Bt � : : :� Bn with suitable indexing and Ai

�= Bi for 1 � i � t � 1. Let
p0i and �0i be the corresponding projections resp. injections. Furthermore we have
A = A1 � : : : � Am with the projections pi and the injections �i. Observe that
�i = �0i for i = 1; : : : ; t� 1, and that we use the same subobjects A1; : : : ; At�1, but
the projections may be di�erent. By Proposition 3.5 we have id = �01p

0
1+ : : :+ �0np

0
n.

Since pt�0i = pt�i = 0 for 1 � i � t� 1 by de�nition of the injections, we get

idAt = pt�t = pt id �t = pt�
0
1p

0
1�t + : : :+ pt�

0
np

0
n�t = pt�

0
tp
0
t�t + : : :+ pt�

0
np

0
n�t:
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By the Corollary 5.6 one of the pt�
0
ip
0
i�t must be an automorphism. After reindexing

we may assume that pt�
0
tp

0
t�t is an automorphism of At. Since (pt�

0
tp

0
t�t)

r+1 =
pt�

0
t(p

0
t�tpt�

0
t)
rp0t�t is also an automorphism, we get (p0t�tpt�

0
t)
r 6= 0, hence p0t�tpt�

0
t is

also an automorphism due to Lemma 5.2. Thus p0t�t : At �! Bt is an isomorphism.
It remains to show that A = A1 � : : :� At � Bt+1 � : : :� Bn. We have A =

Bt� (A1� : : :�At�1�Bt+1� : : :�Bn). Let X = A1� : : :�At�1�Bt+1� : : :�Bn

as subobject of A. Then At is a complement for X in A = Bt � X since p0t�t :
At �! A �! Bt is an isomorphism. By Proposition 2.6 we get At \ X = 0 and
At [ X = A. Furthermore At �! A and X �! A are kernels. Hence A is an
internal direct product A = At �X of At and X .
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