
FOURIER TRANSFORMS OVER FINITE QUANTUM GROUPS

BODO PAREIGIS

1. Introduction

In this note we want to clarify the notion of an integral for arbitrary Hopf algebras
that has been introduced a long time ago [2, 6]. The relation between the integral on
a Hopf algebra and integrals in functional analysis has only been hinted at in several
publications. With the strong interest in quantum groups, i.e. non-commutative and
non-cocommutative Hopf algebras, we wish to show in which form certain transfor-
mation rules for integrals occur in quantum groups.
Our point of view will be the following. Let G be a quantum group in the sense of

non-commutative algebraic geometry, that is a space whose function algebra is given
by an arbitrary Hopf algebra H over some base �eld K. We will also have to use
the algebra of linear functionals H� = Hom(H;K) with the multiplication induced
by the diagonal of H (called the bialgebra of G in the French literature). For most
of this paper we will assume that H is �nite dimensional. Observe that the functions
in H do not commute under multiplication and that they usually have no general
commutation formula.
The model for this setup can be found in functional analysis. There the group G

is a locally compact group, H the space of representative functions on G, and H� the
space of generalized functions or distributions. Then the functions commute under
multiplication.
We will also consider two special examples of our setup. For an arbitrary �nite

group G the Hopf algebra H = K
G is de�ned to be the algebra of functions on G.

Then H� = KG, the group algebra, is the linear dual of H.
If the �nite group G is Abelian and if K is algebraicly closed with char(K) 6� jGj

then the corresponding Hopf algebra is as above H = K
G and H� = KG. By Pon-

tryagin duality there is the group bG of characters on G such that H = K
G = K bG and

H� = KG = K
Ĝ .
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2. Integrals

Let H be an arbitrary Hopf algebra [3, 6]. The linear functionals a 2 H� will be
considered as generalized integrals on H ([5] p.123). We have an operation H�
H 3
a
 f 7! ha; fi 2 K that is nondegenerate on both sides.
We denote the elements of H by f; g; h 2 H, the elements of H� by a; b; c 2 H�,

the (non existing) elements of the quantum group G by x; y; z 2 G.
We will be interested in a special generalized integral

R
2 H� satisfying

a
R
= ha; 1Hi

R
(1)

or a
R
= "(a)

R
. Such an integral is called a left invariant integral.

In the case of a locally compact group G such an element is given by the Haar
integral with respect to a left invariant Haar measure [1]Z

G

f(x)�dx = h
R
; fi:

Therefore we write in the general quantum group situationZ
f(x)dx := h

R
; fi:(2)

This notation has two parentheses,
R

and dx, so that the integrand f is clearly
separated. We also use the notationZ

f(x)g(x)dx := h
R
; fgi:(3)

Observe that f(x) and g(x) are just parts of the whole symbol and in particular that
they do not commute.
In the case of a �nite group G a left invariant integral in H� = KG on H = K

G is
known to be R

=
X
x2G

x(4)

since y
P

x2G x =
P

x2G yx =
P

x2G x = hy; 1Hi
P

x2G x. For arbitrary a 2 KG we
have a

P
x2G x = "(a)

P
x2G x. So our integral notation turns out to beZ

f(x)dx =
X
x2G

f(x)(5)

and has the propertyZ
f(x)dx =

X
x2G

f(x) =
X
x2G

f(yx) =

Z
f(yx)dx(6)

for all y 2 G. This left invariant integral turns out to be also right invariant
R
a =R

"(a).
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3. v. Neumann Transforms

We return to the arbitrary Hopf algebra H of a quantum group. Since H� =
Hom(H;K) and S : H ! H is an algebra antihomomorphism, the dual H� is an
H-module in four di�erent ways:

h(f * a); gi := ha; gfi; h(a ( f); gi := ha; fgi;
h(f + a); gi := ha; S(f)gi; h(a ) f); gi := ha; gS(f)i:

(7)

If H is �nite dimensional then H� is a Hopf algebra. The equality h(f * a); gi =
ha; gfi =

P
ha(1); giha(2); fi implies

(f * a) =
X

a(1)ha(2); fi:(8)

Analogously we have

(a ( f) =
X

ha(1); fia(2):(9)

An easy observation about left invariant integrals on H is

Lemma 1. The set Intl(H
�) of left invariant integrals is a two sided ideal in H�.

The integral
R

is left invariant i� 8y 2 H� : y
R

= "(y)
R

i� 8y 2 H�; f 2 H :
hy
R
; fi = h

R
; (f ( y)i = "(y)h

R
; fi. Since hx; fi = f(x) and hx; (f ( y)i =

hyx; fi = f(yx), the integral
R
is left invariant i�Z
f(yx)dx = "(y)

Z
f(x)dx:(10)

Theorem 2. If there exists 0 6=
R
2 Intl(H�) then the map H 3 f 7! (

R
) f) 2 H�

is injective.

Proof. By [6] theorem 5.1.3 the following homomorphism Intl(H�) 
 H 3
R

f 7!

(
R
) f) 2 H�rat(� H�) is bijective.

Corollary 3. If there exists 0 6=
R
2 Intl(H�) then the antipode S : H ! H is

injective.

Proof. The monomorphism H 3 f 7! (
R
) f) 2 H� is composed of S : H ! H and

H 3 f 7! (f *
R
) 2 H�.

We call a generalized integral a 2 H� a rational integral if a is of the form a =PR
i
) fi.

Corollary 4. For every rational integral a 2 H� there is a unique g 2 H such that

ha; fi =

Z
f(x)S(g)(x)dx

for all f 2 H.

Proof. For every rational integral a there is a unique function g 2 H with a = (
R
)

g), hence ha; fi = h
R
) g; fi = hS(g) *

R
; fi = h

R
; fS(g)i =

R
f(x)S(g)(x)dx.
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One of the �rst to study this property of the integral
R
to represent other linear

functionals was J. v. Neumann in [4].
If H is �nite dimensional then the isomorphism Intl(H�) 
 H 3

R

f 7! (

R
)

f) 2 H�rat(� H�) shows Intl(H
�) has dimension 1.

We choose for the rest of this paper a non zero left invariant integral
R
whenever

we are in the situation of H �nite dimensional.
Let H be �nite dimensional. Since

R
a is a left invariant integral and dim(Intl(H�))

= 1 there is a unique mod(a) 2 K withR
a = mod(a)

R
:

One checks that mod : H� ! K is an algebra homomorphism called the modulus of
H�. If mod = " = 1H� then H� is called unimodular. This is equivalent to

R
also

being right invariant or Intl(H�) = Intr(H�).

Corollary 5. If H is �nite dimensional then for every a 2 H� there is a unique
g 2 H such that ha; fi =

R
f(x)S(g)(x)dx for all f 2 H.

Corollary 6. If H is �nite dimensional then S : H ! H and H 3 f 7! (f *
R
) 2

H� are bijective.

If G is a �nite group then every generalized integral a 2 KG can be written with a
uniquely determined g 2 H as

ha; fi =

Z
f(x)S(g)(x)dx =

X
x2G

f(x)g(x�1)(11)

for all f 2 H.
If G is a �nite Abelian group then each group element (rational integral) y 2 G �

KG can be written as

y =
X
x2G

X
�2Ĝ

��hx
�1; �ix

since hy; fi = h(
R
)
P

�2Ĝ
���); fi = h

R
; fS(

P
�2Ĝ

���)i =
P

x2G
hx; fi

P
�2Ĝ

��
hx; S(�)i = h

P
x2G

P
�2Ĝ ��hx

�1; �ix; fi: In particular the matrix (hx�1; �i) is in-
vertible.

4. The Nakayama Automorphism

Let H be �nite dimensional. Since h
R
; fgi = h(

R
( f); gi as a functional on g is a

generalized integral, there is a unique �(f) 2 H such that

h
R
; fgi = h

R
; g�(f)i(12)

or Z
f(x)g(x)dx =

Z
g(x)�(f)(x)dx:(13)
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Although the functions f; g 2 H of the quantum group do not commute under mul-
tiplication, there is a simple commutation rule if the product is integrated.

Proposition 7. The map � : H ! H is an algebra automorphism, called the
Nakayama automorphism.

Proof. It is clear that � is a linear map. We have
R
f�(gh) =

R
ghf =

R
hf�(g) =R

f�(g)�(h) hence �(gh) = �(g)�(h) and
R
f�(1) =

R
f hence �(1) = 1. Furthermore

if �(g) = 0 then 0 = h
R
; f�(g)i = h

R
; gfi = h(f *

R
); gi for all f 2 H hence

ha; gi = 0 for all a 2 H� hence g = 0. So � is injective hence bijective.

Corollary 8. The map H 3 f 7! (
R
( f) 2 H� is an isomorphism.

Proof. We have

(
R
( f) = (�(f) *

R
)

since h(
R

( f); gi = h
R
; fgi = h

R
; g�(f)i = h(�(f) *

R
); gi. This implies the

corollary.

If G is a �nite group and H = K
G then H is commutative hence � = id.

5. The Dirac Delta Function

An element Æ 2 H is called a Dirac Æ-function if Æ is a left invariant integral in H
with h

R
; Æi = 1, i.e. if Æ satis�es

fÆ = "(f)Æ and

Z
Æ(x)dx = 1

for all f 2 H. If H has a Dirac Æ-function then we writeZ
�

a(x)dx =
R
�
a := ha; Æi:(14)

Proposition 9..

1. If H is �nite dimensional then there exists a unique Dirac Æ-function Æ.
2. If H is in�nite dimensional then there exists no Dirac Æ-function.

Proof. 1. Since H 3 f 7! (f *
R
) 2 H� is an isomorphism there is a Æ 2 H such that

(Æ *
R
) = ": Then (fÆ *

R
) = (f * (Æ *

R
)) = (f * ") = "(f)" = "(f)(Æ *

R
)

which implies fÆ = "(f)Æ. Furthermore we have h
R
; Æi = h

R
; 1HÆi = h(Æ *

R
); 1Hi =

"(1H) = 1K.
2. is [6] exercise V.4.

Lemma 10. Let H be a �nite dimensional Hopf algebra. Then
R
2 H� is a left

integral i�

a(
XR

(1)

 S(

R
(2)
)) = (

XR
(1)

 S(

R
(2)
))a(15)
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i� X
S(a)

R
(1)


R
(2)

=
XR

(1)

 a
R
(2)

(16)

i� X
f(1)h

R
; f(2)i = h

R
; fi1H :(17)

Proof. Let
R
be a left integral. ThenX

a(1)
R
(1)

 S(

R
(2)
)S(a(2)) =

X
(a
R
)(1) 
 S((a

R
)(2)) = "(a)(

XR
(1)

 S(

R
(2)
))

for all a 2 H. Hence

(
PR

(1)

 S(

R
(2)
))a =

P
"(a(1))(

R
(1)

 S(

R
(2)
))a(2)

=
P

a(1)
R
(1)

 S(

R
(2)
)S(a(2))a(3)

=
P

a(1)
R
(1)

 S(

R
(2)
)"(a(2)) = a(

PR
(1)

 S(

R
(2)
)):

Conversely a(
PR

(1) "(S(
R
(2)))) = (

PR
(1) "(S(

R
(2))a)) = "(a)(

PR
(1) "(S(

R
(2)))),

hence
R
=
PR

(1)
"(S(

R
(2)
)) is a left integral.

Since S is bijective the following holdsP
S(a)

R
(1)


R
(2)

=
P

S(a)
R
(1)

S�1(S(

R
(2)
))

=
PR

(1)
S
�1(S(

R
(2))S(a)) =

PR
(1)
a

R
(2) :

The converse follows easily.
If
R
2 Intl(H) is a left integral then

P
ha; f(1)ih

R
; f(2)i = ha

R
; fi = ha; 1Hih

R
; fi.

Conversely if � 2 H� with (17) is given then ha�; fi =
P
ha; f(1)ih�; f(2)i =

ha; 1Hih�; fi hence a� = "(a)�.

If G is a �nite group then

Æ(x) =

(
0 if x 6= e;

1 if x = e:
(18)

In fact since Æ is left invariant we get f(x)Æ(x) = f(e)Æ(x) for all x 2 G and f 2 KG .
Since G � H� = KG is a basis, we get Æ(x) = 0 if x 6= e. Furthermore

R
Æ(x)dx =P

x2G Æ(x) = 1 implies f(e) = 1.
If G is a �nite Abelian group we get Æ = �

P
�2Ĝ � for some � 2 K. The evalu-

ation gives 1 = �h
R
; Æi = �

P
x2G;�2Ĝh�; xi. Now let � 2 bG. Then

P
�2Ĝh�; xi =P

�2Ĝ
h��; xi = h�; xi

P
�2Ĝ

h�; xi. Since for each x 2 G n feg there is a � such that

h�; xi 6= 1 and we get X
�2Ĝ

h�; xi = jGjÆe;x:
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Hence
P

x2G;�2Ĝh�; xi = jGj = ��1 and

Æ = jGj�1
X
�2Ĝ

�:(19)

6. Fourier Transforms

Let H be �nite dimensional for the rest of this paper. In Corollary 8 we have seen
that the map H 3 f 7! (

R
( f) 2 H� is an isomorphism. This map will be called

the Fourier transform.

Theorem 11. The Fourier transform H 3 f 7! ef 2 H� is bijective withef = (
R
( f) =

X
h
R
(1)
; fi
R
(2)

(20)

The inverse Fourier transform is de�ned by

ea =XS�1(Æ(1))ha; Æ(2)i:(21)

Since these maps are inverses of each other the following formulas hold

h ef ; gi = Z f(x)g(x)dx ha;ebi = Z �

S�1(a)(x)b(x)dx

f =
P

S�1(Æ(1))h ef ; Æ(2)i a =
P
h
R
(1);eai R(2) :(22)

Proof. We use the isomorphisms H ! H� de�ned by bf := ef = (
R

( f) =P
h
R
(1)
; fi
R
(2)

and H� ! H de�ned by ba := (a * Æ) =
P

Æ(1)ha; Æ(2)i. Because

of

ha;bbi = ha; (b * Æ)i = hab; Æi(23)

and

h ef ; gi = h(
R
( f); gi = h

R
; fgi(24)

we get for all a 2 H� and f 2 H

ha;
bbf i = ha bf; Æi =Pha; Æ(1)ih bf ; Æ(2)i =Pha; Æ(1)ih

R
; fÆ(2)i ( by Lemma 10 )

=
P
ha; S(f)Æ(1)ih

R
; Æ(2)i = ha; S(f)ih

R
; Æi = ha; S(f)i:

This gives
bbf = S(f). So the inverse map of H ! H� with bf = (

R
( f) = ef is

H� ! H with S�1(ba) = PS�1(Æ(1))ha; Æ(2)i = ea. Then the given inversion formulas
are clear.

If G is a �nite group and H = K
G thenef =

X
x2G

f(x)x:



8 BODO PAREIGIS

Since �(Æ) =
P

x2G x
�1�
x� where the x� 2 KG are the dual basis to the x 2 G, we

get ea =X
x2G

ha; x�ix�:

If G is a �nite Abelian group then the groups G and bG are isomorphic so the Fourier
transform induces a linear automorphism e- : KG ! K

G and we have

ea = jGj�1
X
�2Ĝ

ha; �i��1

By substituting the formulas for the integral and the Dirac Æ-function (4) and (19)
we get ef =

P
x2G f(x)x; ea = jGj�1

P
�2Ĝ a(�)�

�1;

f = jGj�1
P

�2Ĝ
ef (�)��1; a =

P
x2G ea(x)x:(25)

This implies

ef(�) =X
x2G

f(x)�(x) =

Z
f(x)�(x)dx(26)

with inverse transform ea(x) = jGj�1
X
�2Ĝ

�(a)��1(x):(27)

Lemma 12. The Fourier transforms of the left invariant integrals in H and H� areeÆ = "��1 2 H� and eR = 1 2 H:(28)

Proof. We have heÆ; fi = h
R
; Æfi = h

R
; ��1(f)Æi = "��1(f)h

R
; Æi = "��1(f) henceeÆ = "��1 and ha; eR i =

P
ha; S�1(Æ(1))ih

R
; Æ(2)i = ha; S�1(1)ih

R
; Æi = ha; 1i; henceeR = 1.

Proposition 13. De�ne a convolution multiplication on H� by

ha � b; fi :=
X

ha; S�1(Æ(1))fihb; Æ(2)i:

Then the following transformation rule holds for f; g 2 H:ffg = ef � eg:(29)

In particular H� with the convolution multiplication is an associative algebra with unitf1H =
R
, i.e. R

� a = a �
R
= a:(30)



FOURIER TRANSFORMS OVER FINITE QUANTUM GROUPS 9

Proof. Given f; g; h 2 H�. Then

hffg; hi = h
R
; fghi = h

R
; fS�1(1H)ghih

R
; Æi

=
P
h
R
; fS�1(Æ(1))ghih

R
; Æ(2)i =

P
h
R
; fS�1(Æ(1))hih

R
; gÆ(2)i

=
P
h ef ; S�1(Æ(1))hiheg; Æ(2)i = h ef � eg; hi:

From (28) we get e1H =
R
. So we have ef = f1f = e1 � ef =

R
� ef .

If G is a �nite Abelian group and a; b 2 H� = K
Ĝ . Then

(a � b)(�) = jGj�1
X

�;�2Ĝ;��=�

a(�)b(�):

In fact we have

(a � b)(�) = ha � b; �i =
P
ha; S�1(Æ(1))�ihb; Æ(2)i

= jGj�1
P

�2Ĝ
ha; ��1�ihb; �i = jGj�1

P
�;�2Ĝ;��=� a(�)b(�):

7. The Plancherel Formula

One of the most important formulas for Fourier transforms is the Plancherel formula
on the invariance of the inner product under Fourier transforms. We have

Theorem 14. (The Plancherel formula)

ha; fi = h ef ; �(ea)i:(31)

Proof. First we have

ha; fi =
P
h
R
(1)
;eaihR

(2)
; S�1(Æ(1))ih ef ; Æ(2)i =Ph

R
;eaS�1(Æ(1))ih ef ; Æ(2)i

=
P
h
R
; S�1(Æ(1))�(ea)ih ef ; Æ(2)i =Ph

R
; S�1(S(�(ea))Æ(1))ih ef ; Æ(2)i

=
P
h
R
; S�1(Æ(1))ih ef ; �(ea)Æ(2)i =Ph

R
; S�1(Æ)(2)ih ef ; �(ea)S(S�1(Æ)(1))i

= h
R
; S�1(Æ)ih ef; �(ea)i:

Apply this to h
R
; Æi. Then we get

1 = h
R
; Æi = h

R
; S�1(Æ)iheÆ; �(eR )i = h

R
; S�1(Æ)i"��1�(1) = h

R
; S�1(Æ)i:

Hence we get ha; fi = h ef ; �(ea)i:
Corollary 15. If H is unimodular then � = S2.

Proof. H unimodular means that Æ is left and right invariant. Thus we get

ha; fi =
P
h
R
(1);eaihR (2); S

�1(Æ(1))ih ef ; Æ(2)i
=
P
h
R
;eaS�1(Æ(1))ih ef ; Æ(2)i =Ph

R
; S�1(Æ(1)S(ea))ih ef ; Æ(2)i

=
P
h
R
; S�1(Æ(1))ih ef ; Æ(2)S2(ea)i ( since Æ is right invariant)

= h
R
; S�1(Æ)ih ef; S2(ea)i = h ef ; S2(ea)i:

Hence S2 = �.
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We also get a special representation of the inner product H� 
 H ! K by both
integrals:

Corollary 16.

ha; fi =

Z ea(x)f(x)dx =

Z
�

S�1(a)(x)ef(x)dx:(32)

Proof. We have the rules for the Fourier transform. From (24) we get ha; fi =
h
R
;eafi = R ea(x)f(x)dx and from (23) we get

ha; fi = hS�1(a) ef; Æi = Z �

S�1(a)(x) ef(x)dx:
The Fourier transform leads to an interesting integral transform on H by double

application.

Proposition 17. The double transform �f := (Æ ( (
R
( f)) de�nes an automor-

phism H ! H with

�f(y) =

Z
f(x)Æ(xy)dx:

Proof. We have

hy; �f i = hy; (Æ ( (
R
( f))i = h(

R
( f)y; Æi

=
P
h(
R
( f); Æ(1)ihy; Æ(2)i =

P
h
R
; fÆ(1)ihy; Æ(2)i

=
P
h
R
(1)
; fih

R
(2)
; Æ(1)ihy; Æ(2)i =

P
h
R
(1)
; fih

R
(2)
y; Æi

=
P
h
R
(1); fih

R
(2); (y * Æ)i =

P
h
R
; f(y * Æ)i

=
R
f(x)Æ(xy)dx

since hx; (y * Æ)i = hxy; Æi.
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