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Abstract. The main issue of this paper is an axiomatization of the notion of abso-
lutely convergent series involving a set of summands of �xed (but unrestricted) in�nite
cardinality N . This notion is used to de�ne the category NRpnSmod1 of R-prenormed
R-semimodules with N -summation whose homomorphisms are contractive. Based on this
we introduce left N -convexity theories � and the category �C of left �-convex modules.
We show that the closed unit ball functor NRpnSmod1 �! Set, the forgetful functor
�C �! Set, and the associated �-convex module functor NRpnSmod1 �! �C have left
adjoints.

1991 Mathematics Subject Classi�cation: 16Y60, 52A01.

Introduction

The basic de�nitions of this paper are contained in x1. They concern an axiomatic
approach to the notion of \absolutely convergent series" in prenormed semirings
and prenormed semimodules . The type of series we are interested in have a set of
summands of a �xed, but arbitrary, in�nite cardinality N . Semimodules equipped
with a family of such \summable" series are said to haveN-summation. The section
concludes with few statements directly related to the basic de�nitions. x2 consists
of several results involving semimodules with N-summation. In addition we intro-
duce maps from a �xed, but arbitrary, set to a semimodule with N-summation
that are \summable". These maps are used in x3 to de�ne, for an arbitrary set
A, the free semimodule LN (A) with N-summation on the set A. LN (A) is a gen-
eralization of the well known functional-analytic concept of `1-space on the set
A. The functor Set 3 A 7! LN (A) 2 NRpnSmod1 is the left adjoint of the for-
getful functor NRpnSmod1 �! Set; here, NRpnSmod1 stands for the category
of R-prenormed R-semimodules with N-summation and their contractive homo-
morphisms. In section 4 we deal with N-convexity theories � over prenormed
semirings with N-summation (generalizing the corresponding concept in [5], x3
and x7), derive few of the properties of �-convex modules, and give an explicit
construction of the free �-convex modules. This construction di�ers from and is
more perspicuous than the one given in [3], x5. In x5 we introduce the functor
O� : NRpnSmod1 �! �C, where for a given N-convexity theory � the category
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�C is the category of �-convex modules and their homomorphisms.O�(M) is the
closed unit ball of M equipped with the obvious operation of � on the closed unit
ball of M . In addition we exhibit the left adjoint S� of O�. The paper ends with
a section presenting several examples for the previously introduced concepts.

1. The basic de�nitions

Let R be a semiring (in the sense of [5], x1). Let furthermore N be a �xed set of
cardinality � @0. Maps from N to R, that is elements of RN , will be denoted by
lower case greek letters with a lower placeholder symbol, e.g. �� or ��; occasionally
we will write: f�n : n 2 Ng or f�(n) : n 2 Ng instead of ��. If we de�ne ��+�

��

as the map N 3 n 7�! �n+�
�n 2 R then RN becomes a semiring. If r 2 R and if

we denote the constant map N �! R with value r by r� then R 3 r 7! r� 2 RN

is a homomorphism of semirings.
Let M be a semimodule (in the sense of [5], x1) over the semiring R. Then we

can again formMN . Let �� 2 RN and �0�; �� 2M
N , and de�ne ���� and �0�+��

pointwise | as in the case of R| thenMN becomes a RN -semimodule. As before
we let m�, m 2M , be the constant map with value m. ThenM 3 m 7! m� 2MN

is a homomorphism of R-semimodules.
If R is a partially ordered semiring andM is a partially ordered R-semimodule

(in the sense of [5], x1) then we de�ne �0� � ��, where �0�; �� 2 MN , as �0n � �n
for all n 2 N . This makes MN a partially ordered semimodule over the partially
ordered semiring RN . Obviously, R 3 r 7! r� 2 RN and M 3 m 7! m� 2 MN are
order preserving. �� 2 MN is said to be bounded if there are m0;m00 2 M with
m0
� � �� � m00

� , and a family f�i� : i 2 Ig is called uniformly bounded if there are
m0;m00 2M with m0

� � �i� �m00
� for all i 2 I.

If M is an R-prenormed R-semimodule over the prenormed semiring R and if
k k denotes the prenorm with value cone C (see [5], x2) then, with �� 2 MN , we
denote by k��k the map N 3 n 7! k�nk 2 C; hence k��k is in CN . This makes
MN a RN -prenormedRN -semimodule over the prenormed semiringRN with value
cone CN .

Finally a construction that will be used later. Let A be some set and � : N �!
A a set map. Let furthermoreM be an R-semimodule and �� 2MN . Given a 2 A

we denote by �
��1(a)
� the map N �!M given by

N 3 n 7!

�
�n , if �(n) = a;
0 , otherwise.

In other words, �
��1(a)
� is given by the formulae

�
��1(a)
� j��1(a) = ��j�

�1(a) and �
��1(a)
� jN r ��1(a) = 0�jN r ��1(a):
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Note that any subset of N can be obtained as ��1(a), provided that A contains
at least two elements, and that each partition of N can be written as f��1(a) :
a 2 A0g for some subset A0 of A, provided that A is large enough.

In the following de�nition we refer to the concept of positive semiring. Ac-
cording to [5], x1, a positive semiring is a partially ordered semiring with 0 as its
smallest element.

(1.1) De�nition. Let C be a positive semiring. By a left N-summation for C
is meant a pair (SC;�C) consisting of a C-subsemimodule SC of CN and a C-
homomorphism �C : SC �! C such that

(i) C(N) := f�� 2 CN : supp �� is �niteg is contained in SC and for all
�� 2 C(N), �C(��) =

P0f�n : n 2 supp ��g, where
P0 stands for the

usual sum of �nitely many elements in C;
(ii) for all �� 2 SC and �� 2 CN with �� � ��; �� is in SC and �C(��) �

�C(��);

(iii) for every �� 2 SC and every map ' : N �! N;�
'�1(n)
� is in SC for all

n 2 N , and the map �'
�1

� given by N 3 n 7! �C(�
'�1(n)
� ) 2 C is in SC

and satis�es �C(�
'�1

� ) = �C(��);

(iv) if �� is in CN and there exists a map ' : N �! N such that �
'�1(n)
� is in

SC for all n 2 N and that �'
�1

� is in SC then �� is in SC.

(1.2) Lemma. Let C be a positive semiring with left N-summation (SC;�C).
Then the conditions (1.1), (i)-(iii), imply that for every �� 2 SC the inequalities
�n � �C(��); n 2 N , hold; in particular, if supf�n : n 2 Ng exists, supf�n : n 2
Ng � �C(��) is satis�ed. ut

The next de�nition uses the notion of prenormed semiring. Due to [5], (2.1),
this is a semiring R together with a map k k : R �! C, where C is a positive and
complete (with respect to the partial order) semiring, such that
(o) k0k = 0 and k1k = 1;
(i) kr1 + r2k � kr1k+ kr2k , for all r1; r2 2 R;
(ii) kr1r2k � kr1kkr2k , for all r1; r2 2 R.

The semiring C is called the value cone of R and k k is said to be the prenorm of
R.

(1.3) De�nition. Let R be a prenormed semiring with prenorm k k : R �! C: By
a left N-summation for R is meant a left N-summation (SC;�C) for C together
with a pair (SR;�R) consisting of an R-subsemimodule SR of RN and an R-
homomorphism �R : SR �! R such that
(o) �� 2 RN is in SR if and only if k��k is in SC;
(i) R(N) := f�� 2 RN : supp �� is �niteg is contained in SR and for all

�� 2 R(N), �R(��) =
P0f�n : n 2 supp ��g, where

P0 stands for the
usual sum of �nitely many elements in R;

(ii) for all �� 2 SR and �� 2 RN with k��k � k��k, �� is in SR and k�R��k �
�Ck��k;
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(iii) for every �� 2 SR and every ' : N �! N;�
'�1(n)
� is in SR for all n 2 N ,

and the map �'
�1

� given by N 3 n 7! �R(�
'�1(n)
� ) 2 R is in SR and satis�es

�R(�
'�1

� ) = �R(��).

De�nition (1.4) requires the notion of R-prenormed left R-semimodule over
the prenormed semiring R with prenorm k k : R �! C. By this is meant a left
R-semimodule M together with a map k k :M �! C such that
(o) k0k = 0;
(i) km1 +m2k � km1k+ km2k , for all m1;m2 2M ;
(ii) krmk � krkkmk , for all r 2 R;m 2M .

(1.4) De�nition. Let R be a prenormed semiring with prenorm k k : R �!
C and N-summation (SR;�R) for R and (SC ;�C) for C. An R-prenormed left
R-semimodule M with left N-summation is an R-prenormed left R-semimodule
together with a pair (SM ;�M ) consisting of an R-subsemimodule SM of MN and
an R-homomorphism �M : SM �!M such that
(o) �� 2 MN is in SM if and only if k��k is in SC;
(i) M (N) := f�� 2 MN : supp �� is �niteg is contained in SM and for all

�� 2 M (N);�M (��) =
P0f�n : n 2 supp ��g, where

P0 stands for the
usual sum of �nitely many elements in M ;

(ii) for all �� 2 SM and �� 2MN with k��k � k��k, �� is in SM and k�M��k �
�Ck��k;

(iii) for every �� 2 SM and every ' : N �! N;�
'�1(n)
� is in SM for all n 2 N ,

and the map �'
�1

� given by N 3 n 7! �M (�'
�1(n)

� ) 2 M is in SM and

satis�es �M (�'
�1

� ) = �M (��).

Note that (1.3) is a special case of (1.4) and that (1.1) can be viewed as a special
case of (1.3) by setting R = C; k k = idC ; SR = SC, and �R = �C. Hence the
statements following (1.5) concerning semimodules apply to prenormed semirings
and positive semirings as well.

(1.5) De�nition. Let M and M 0 be R-prenormed R-semimodule with left N-
summation (SM ;�M ) resp. (SM 0 ;�M 0). Then a homomorphism from M to M 0 is
a map f :M �!M 0 such that

(i) f is a homomorphism of left R-semimodules from M to M 0 satisfying

fN (SM ) � SM 0 and �M 0(fN (��)) = f(�M (��)) , for all �� 2 SM ;

(ii) there is a c 2 C (depending on f) with

k�M 0fN (��)k � (�C(k��k))c , for all �� 2 SM :

It is clear from (1.18) that the totality of R-prenormedR-semimodules with left
N-summation together with their homomorphisms and the set-theoretical compo-
sition of these forms a category NRpnSmod.
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A homomorphism of R-prenormed R-semimodules is called contractive (or a
contraction) if c = 1 can be chosen in (1.5), (ii). Again it is easy to see that the
totality of R-prenormedR-semimodules together with their contractive homomor-
phisms forms a subcategory NRpnSmod1 of NRpnSmod.

We close with three statements directly related to the above de�nitions.

(1.6) Lemma. (1.4), (o), implies that, whenever �� 2 SM and �� 2 MN with
k��k � k��k holds then �� 2 SM is satis�ed.

Proof. Due to (1.4), (o), k��k is in SC. Hence (1.1), (ii), shows that k��k is in SC
and thus, by (1.4), (o), �� is in SM . ut

(1.7) Lemma. (1.4), (o) and (ii), imply that, whenever �� 2 SM and ' : N �!

N is a map, �
'�1(n)
� is in SM , for all n 2 N , and �'

�1

� is in SM .

Proof. Again k��k is in SC. Since k�
'�1(n)
� k � k��k, k�

'�1(n)
� k is in SC and thus

�
'�1(n)
� is in SM . By (1.4), (ii),

k�M (�'
�1(n)

� )k � �C(k�
'�1(n)
� k) = �C(k��k

'�1(n)):

Due to (1.1), (iii), N 3 n 7! �C(�
'�1(n)
� ) 2 C is in SC as k��k is in SC. Therefore

the map N 3 n 7! k�M (�
'�1(n)
� )k 2 C is in SC and hence the map �'

�1

� , that is

N 3 n 7! �M (�
'�1(n)
� ), is in SM . ut

(1.8) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(SM ;�M ) and denote the N-summation of R by (SR;�R). If �� 2 SR and �� 2 SM
then ���

�, de�ned as the map N 3 n 7! �n�
n 2M , is in SM .

Proof. Since �� is in SR, it follows from (1.3), (o), that k��k is in SC, whence
k�nk � �Ck��k, n 2 N , on account of (1.2). Therefore k����k � (�Ck��k)k��k,
and (1.1) and (1.4), (o), show that the right hand side of this inequality is in SC.
Thus k����k is in SC due to (1.1), (ii), whence ���� is in SM by (1.4), (o).

2. Elementary results

(2.1) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(SM ;�M ). Let furthermore �� 2 SM and �� 2MN be such that there is a bijection
' : supp �� �! supp �� with �n = �'(n), for all n 2 supp ��. Then �� is in SM
and �M (��) = �M (��).

Proof. Extend ' to some map ' : N �! N . Then one checks quickly that �� =

�'
�1

� holds. Hence (1.1), (iii), shows that �� is in SM and that �M (��) = �M (��)
is valid. ut
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(2.2) Corollary. LetM be an R-prenormed R-semimodule with left N-summation
(SM ;�M ). Let furthermore f : A �! M be a map with card(supp f) � cardN .
Then there is a map � : N �! A, a �� 2 MN , and sets A0 and N 0 with
supp f � A0 � A, supp �� � N 0 � N , and cardA0 � cardN such that

a) A0 � �(N) and A0j�jN 0 is a bijection
b) �n = f(�(n)) , for all n 2 N 0.

Moreover, if �, ��, A
0
and N

0
is another set of data satisfying the above conditions,

for all n 2 N 0, then �� is in SM if and only if �� is in SM , in which case
�M (��) = �M (��) holds.

Proof. The existence of �, ��, A0, and N 0 is obvious. The balance of (2.2) is an
immediate consequence of (2.1). ut

(2.3) Remark. Suppose we are in the situation of (2.2) but are dealing with a
family ffn : n 2 ~Ng of maps A �! N , whose index set satis�es card ~N � cardN ,
instead of looking at a single such map. If card(supp fn) � cardN , for all n 2 ~N ,
then, as cardN2 = cardN , card(

S
fsupp fn : n 2 ~Ng) � cardN holds. Therefore,

in (2.2), �, A0, and N 0 can be chosen such that for every fn, n 2 ~N , and the (now
uniquely determined) ��n, n 2 ~N , the conditions in (2.2) are satis�ed. ut

Due to (2.2) we can formulate

(2.4) De�nition. Let M be an R-prenormed R-semimodule with left N-summa-
tion (SM ;�M ). Let furthermore A be any set. Then we de�ne SM;A as the set of
maps f : A �! M such that card(supp f) � cardN and for some data �; ��; A0,
and N 0 in (2.2), �� 2 SM holds. Moreover, we de�ne �M;A(f) := �M (��), for all
f 2 SM;A, to obtain a map �M;A : SM:A �!M .

Note that SM;N = SM and �M;N = �M hold. We will write occasionally
�M;Aff(a) : a 2 Ag instead of �M;A(f):

For f : A �!M we denote by kfk the map A 3 a 7! kf(a)k 2 C.

(2.5) Lemma. For every set A and every R-prenormed R-semimodule M with
left N-summation, SM;A is an R-subsemimodule of MA and �M;A : SM;A �!M
is an R-homomorphism of R-prenormed semimodules; in particular, k�M;A(f)k �
�C;A(kfk):

Proof. Let f and g be in SM;A: Choose the data in (2.2) to serve both f and g
(see (2.3)). If �� corresponds to f and �� corresponds to g then, obviously, ��+��
corresponds to f + g. Hence f + g belongs to SM;A. Similarly one shows that rf ,
r 2 R, f 2 SM;A, also belongs to SM;A. Moreover,

�M;A(f + g) = �M (�� + ��) = �M (��) + �M (��) = �M;A(f) + �M;A(g)
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and

�M;A(rf) = �M (r���) = r�M (��) = r�M;A(f):

Finally,

k�M;A(f)k = k�M (��)k � �C(k��k) = �C;A(kfk): �

(2.6) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(SM ;�M ). Furthermore let A be any set. Then f 2 MA belongs to SM;A if and
only if kfk 2 CA belongs to SC;A:

Proof. (1.4),(o), and (2.3). ut

(2.7) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(SM ;�M ). Then, for any set A;M (A) := ff 2MA : supp f is �niteg is contained
in SM;A and for all f 2 M (A);�M;A(f) =

P0ff(a) : a 2 supp fg, where
P0

stands for the usual sum of �nitely many elements in M .

Proof. (1.4), (i), and (2.2). ut

(2.8) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(SM ;�M ). Furthermore let A be any set. If f is in SM;A and g 2MA with kgk �
kfk then g is in SM;A and k�M;A(g)k � �C;A(kfk):

Proof. (1.4),(ii), and (2.2). ut

(2.9) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(SM ;�M ). Furthermore let A be any set. If f is in SM;A and  : A �! A is any

map then, for any a 2 A, the map f 
�1(a) given by

A 3 b 7!

�
f(b) , if  (b) = a;
0 , otherwise.

is in SM;A; moreover, the map f 
�1

given by A 3 a 7! �M;A(f 
�1(a)) 2 M is in

SM;A and �M;A(f 
�1

) = �M;A(f).

Proof. (1.4),(iii), and (2.2). ut

(2.10) Corollary. Let M be an R-prenormed R-semimodule with left N-summa-
tion (SM ;�M ). Furthermore let A be any set and � : A �! A be any bijection.
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Then f 2 MA is in SM;A if and only if f� := f � � is in SM;A, in which case
�M;A(f�) = �M;A(f):

Proof. Immediate consequence of (2.9) ut

(2.11) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(SM ;�M ). Furthermore let A and B be any sets. For f 2 SM;A�B de�ne f(a; -) :
B �!M resp. f(-; b) : A �!M as the maps

B 3 b 7! f(a; b) 2M resp. A 3 a 7! f(a; b) 2M:

Then f(a; -) in in SM;B; for all a 2 A, and f(-; b) is in SM;A; for all b 2 B, and
the maps

A 3 a 7! �M;B(f(a; -)) 2M resp. B 3 b 7! �M;A(f(-; b)) 2M

are in SM;A resp. SM;B and satisfy

�M;Af�M;Bff(a; b) : b 2 Bg : a 2 Ag = �M;Bf�M;Aff(a; b) : a 2 Ag : b 2 Bg

= �M;A�B(f):

Proof. By (2.2), (2.11) can be reduced to the case A = B = N . In this situation
choose a bijection N2 �! N , use (2.1), and apply (1.4), (iii), twice. ut

As a special case of (2.11) we obtain

(2.12) Corollary. Let M be an R-prenormed R-semimodule with left N-summa-
tion (SM ;�M ). If �� 2 SR and m 2 M then the map ��m given by N 3 n 7!
�nm 2 M is in SM and �M (��m) = (�R��)m. Similarly if r 2 R and �� 2 SM
then the map r�� given by N 3 n 7! r�n 2M is in SM and �M (r��) = r(�M��):
ut

(2.13) Corollary. Let f 2 MA, ' : A �! B a map. For b 2 B let kfk'
�1(b) be

the map

A 3 a 7!

�
kf(a)k , if '(a) = b;
0 , otherwise.

Suppose that kfk'
�1(b) is in SC;A for every b 2 B and that the map

B 3 b 7!

�
�C;A(kfk'

�1(b)) , if b 2 '(A);
0 , otherwise;

is in SC;B. Then f is in SM;A.

Proof. This is an immediate consequence of (1.1),(iii'),(1.4), (o), and (2.2). ut



9

If should be pointed out that, with all index sets assumed to have cardinality
� cardN , there is a correspondence between certain axioms in [7], x6, and some
of the results obtained here. This correspondence is as follows:

Equivalent Families Axiom � (2.9),

Unary Sum Axiom � (1.4), (i),

Generalized Partition Axiom � (1.4), (iii),

Weak Double Sum Axiom � (2.11).

3. The closed unit ball functor

As in [5] one de�nes the closed unit ball functor BN : NRpnSmod1 �! Set. Its
value on the object M of NRpnSmod1 is

BN(M) := fm 2M : kmk � 1g:

(3.1) Theorem. BN : NRpnSmod1 �! Set has a left adjoint LN .

Proof. We put LN (;) := f0g. If A 6= ; is any nonempty set, we put { as a set {

LN (A) := SR;A � RA:

Due to (2.5), LN (A) is an R-subsemimodule of RA.
Next we de�ne a prenorm jjj jjj : LN (A) �! C by putting

(3:2) jjjf jjj := �C;A(kfk) = �C;Afkf(a)k : a 2 Ag ; f 2 LN (A):

Since kf + gk � kfk + kgk, f and g in LN (A), we obtain from (2.5) and (2.8)
jjjf + gjjj � jjjf jjj + jjjgjjj. jjjrf jjj � krk � jjjf jjj, r 2 R, f 2 LN (A), follows
similarly. This means that LN (A) is an R-prenormed R-semimodule.

It remains to de�ne (SLN (A);�LN (A)). Let F� 2 (RA)N . Given a 2 A we denote
the map N 3 n 7! Fn(a) 2 R by F�(a). Due to (1.3), (o), F�(a) is in SR if and
only if kF�(a)k, that is the map N 3 n 7! kFn(a)k 2 C, is in SC. In this case we
can form the map �CkF�k : A �! C that is given by

(�CkF�k)(a) := �C(kF�(a)k) ; a 2 A:

With these notations we have

S : = SLN(A)

= fF� 2 LN (A)N : kF�(a)k 2 SC; for all a 2 A; and �CkF�k 2 SC;Ag:

In order to de�ne � := �LN (A), let F� be in S. Since kF�(a)k is in SC we have that
F�(a), that is the map N 3 n 7! Fn(a) 2 R, is in SR. Due to (1.3), (ii), we obtain
k�RF�(a)k � �CkF�(a)k. If �RF� denotes the map A 3 a 7! �RF�(a) 2 R then
we have k�RF�k � �CkF�k. Since the latter function is in SC;A, (2.8) shows that
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k�RF�k is in SC;A, whence �RF� is in SR;A due to (2.6). In other words, �RF� is
in LN (A), and we put �F� := �RF�.

At this point we have to show that (S;�) is a left N-summation for LN (A). So,
let F� and G� be in S. Then F� +G� is the map N 3 n 7! Fn +Gn 2 LN (A) and
hence F�+G� 2 LN (A)N . Moreover, (Fn+Gn)(a) = Fn(a)+Gn(a) for all a 2 A.
Thus, k(F� +G�)(a)k � kF�(a)k + kG�(a)k. Since both kF�(a)k and kG�(a)k are
in SC, (1.1) shows that kF�(a)k + kG�(a)k is in SC. Therefore (1.1), (ii), implies
that k(F� +G�)(a)k is also in SC and that

�C(k(F� +G�)(a)k) � �C(kF�(a)k + kG�(a)k) = �C(kF�(a)k) + �C(kG�(a)k)

holds for all a 2 A. This means that �CkF� +G�k � �CkF�k+�CkG�k is valid.
By assumption both �CkF�k and �CkG�k are in SC, whence �CkF�k+�CkG�k
is in SC. Thus (1.1), (ii), shows that �CkF�+G�k is in SC. Therefore F�+G� is in
S. Similarly, but more simply, one shows that F� 2 S and r 2 R implies rF� 2 S.
Thus we have shown that S is an R-subsemimodule of LN (A)N .

Next we need to prove that � is a homomorphism of R-semimodules. Again
let F� and G� be in S. Then �R(F�(a) +G�(a)) = �RF�(a) + �RG�(a) and thus
�R(F�+G�) = �RF�+�RG�. Moreover, (�R(F�+G�))� = (�RF�)�+(�RG�)�,
whence

�(F� +G�) = �R((�R(F� +G�))�) = �R((�RF�)� + (�RG�)�)

= �R((�RF�)�) + �R((�RG�)�) = �F� +�G�:

Similarly one obtains �rF� = r�F�, and � is recognized as a homomorphism of
R-semimodules.

Now we wish to verify (1.4), (o). For this, let F� be in LN (A)N . We have
to show that F� 2 S is equivalent with jjjF�jjj 2 SC, where jjjF�jjj is the map
N 3 n 7! jjjFnjjj 2 C. Let (F�) denote the map A �N 3 (a; n) 7! kFn(a)k 2 C.
Suppose that F� 2 S holds. Let ' : A � N �! A be the projection onto the �rst
factor. Then, for every a 2 A,

(F�)
'�1(a)(b; n) =

�
kFn(a)k , if b = a,
0 , otherwise.

Since kF�(a)k is in SC, (F�)'
�1(a) belongs to SC;A�N due to (2.1). Moreover,

�CkF�(a)k = �C;A�N(F�)'
�1(a). Since �C;AkF�k is in SC;A, (2.12) shows that

(F�) is in SC;A�N . Thus (2.11) implies that, with  : A�N �! N the projection

onto the second factor, (F�)
 �1(n) is in SC;A�N for every n 2 N . But due to (2.1)

�C;A�N (F�)
 �1(n) = �C;AfkFn(a)k : a 2 Ag = jjjFnjjj ; n 2 N:

Hence (2.11) shows that jjjF�jjj is in SC. The same type of argument shows that
jjjF�jjj 2 SC implies F� 2 S.

On to (1.4), (i). Here we are dealing with F� 2 LN (A)N with �nite support.
Hence kF�(a)k has �nite support and is therefore in SC, for all a 2 A. In particular,

�CkF�(a)k =
X0

fkFn(a)k : n 2 supp F�g
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and hence

�CkF�k =
X0

fkFnk : n 2 supp F�g:

Since SC;A is an R-semimodule, the right hand side of the last equation, and thus
�CkF�k, is in SC;A. Therefore F� is in S. Moreover, with F� having �nite support,
so does F�(a), for all a 2 A, and

�RF�(a) =
X0

fFn(a) : n 2 supp F�g ; a 2 A:

Consequently,

�F� = �RF� =
X0

fFn : n 2 supp F�g;

and (1.4), (i), is satis�ed.
Next comes (1.4), (ii). Let F� 2 S and G� 2 LN (A)N with jjjG�jjj � jjjF�jjj.

By (1.4), (o), jjjF�jjj 2 SC holds. Due to (1.1), (ii), jjjG�jjj is in SC. By (1.4),(o),
G� is in S. Since (�RG�)(a) = �R(G�(a)) = �RfGn(a) : n 2 Ng, it follows from
(1.3), (ii), that

k(�RG�)(a)k � �CfkGn(a)k : n 2 Ng = �CkG�(a)k:

Therefore we obtain, as in the proof of (1.4), (o),

jjj�G�jjj = �C;Afk(�RG�)(a)k : a 2 Ag � �C;Af�CfkGn(a)k : n 2 Ng : a 2 Ag

= �C;A�N ((G�)) = �CjjjG�jjj

and, through (1.1), (iii),

jjj�G�jjj � �C jjjG�jjj � �C jjjF�jjj:

There remains (1.4), (iii). Let F� 2 S and let ' : N �! N be a map. By (1.7),

F
'�1(n)
� is in S, for all n 2 N , and F'

�1

� is in S. Moreover, for every a 2 A, due
to (1.3), (iii),

(�F�)(a) = �R(F�(a)) = �R(F�(a)
'�1 ) = �Rf(�R(F�(a)

'�1(n))) : n 2 Ng

= �Rf(�R(F
'�1(n)
� )(a)) : n 2 Ng = �Rf(�F

'�1(n)
� )(a) : n 2 Ng

= (�f�F
'�1(n)
� : n 2 Ng)(a) = (�F'

�1

� )(a);

and thus �(F'
�1

� ) = �(F�), as had to be shown.
At this point we know that LN (A) is an R-prenormed R-semimodule with left

N-summation (SLN(A);�LN (A)).
For a 2 A let �a be the Dirac function at a on A, that is the map A �! R

with �a(a) = 1 and �a(b) = 0, for all a 6= b 2 A. By (1.3), (i), �a is in LN (A)
and jjj�ajjj = 1 holds. The map A 3 a 7! �a 2 BN (LN (A)) is denoted by � and
is called the Dirac map on A. We claim that � : A �! BN (LN (A)) is universal
with respect to NRpnSmod1. For this let M be an R-prenormed R-semimodule
with left N-summation (SM ;�M ) and let h : A �! BN (M) be any set map. Let
furthermore f 2 LN (A) and consider the map fh given by A 3 a 7! f(a)h(a) 2M .
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Then kfhk(a) = kf(a)h(a)k � kf(a)kkh(a)k � kf(a)k, for every a 2 A. By
(1.3), (o), f 2 SR;A implies kfk 2 SC;A. The last inequalities together with (1.1),
(ii), show kfhk 2 SC;A. Hence (1.4), (o), implies fh 2 SM;A. Hence we have
h(f) := �M;A(fh) 2M . Thus we obtain the map h : LN (A) �!M . By (1.4), (i),
h(�a) = h(a), for all a 2 A. Since �M;A is a homomorphism of R-semimodules, the
same is true for h. We want to show that h is a homomorphism of R-prenormedR-
semimodules with left N-summation. Let F� 2 S. Then jjjF�jjj 2 SC due to (1.4),

(o). Since, for any f 2 LN (A), jjjh(f)jjj � jjjf jjj holds, we have jjjh
N
(F�)jjj �

jjjF�jjj and thus jjjh
N
(F�)jjj 2 SC by (1.1), (ii), and hence h

N
(F�) 2 SC by (1.4),

(o). That is, h
N
(S) � SM . Now consider F� as a map A�N �! R. Since jjjF�jjj

is in SC, it follows from (2.12) that F� is in SR;A�N . Let p : A �N �! A be the

�rst projection and put ~h := h � p. Then F� � ~h is in MA�N , and it follows from
(2.8) that F� � ~h is in SM;A�N . Hence (2.11) and (2.12) lead to

�M;A�N (F� � ~h) = �M;Af�MfFn(a) � h(a) : n 2 Ng : a 2 Ag

= �M;Af(�RfFn(a) : n 2 Ng) � h(a) : a 2 Ag

= �M;Af(�RF�(a)) � h(a) : a 2 Ag = �M;A((�F�) � h) = h(�F�):

On the other hand

MM;A�N (F� � ~h) = �Mf�M;AfFn(a)h(a) : a 2 Ag : n 2 Ng

= �Mfh(Fn) : n 2 Ng = �M (h
N
(F�)):

This means that �M (h
N
(F�)) = h(�F�), which is the formula in (1.5), (i). Finally,

as jjjh
N
(F�)jjj � jjjF�jjj has been shown before, (1.4), (ii), implies

k�Mh
N
(F�)k � �C jjjh

N
(F�)jjj � (�C jjjF�jjj) � 1;

showing (1.5), (ii), as well as proving that h is a contraction.
The very �nal step is now to show that h is unique. So, let h0 : LN (A) �!

M be a contractive homomorphism of R-prenormed R-semimodules with left N-
summation such that h = h0 � �. Let f 2 LN (A). As in (2.2) we have supp f �
A0 � A, N 0 � N , with cardA0 � cardN , and � : N �! A satisfying (2.2), a). Let
f� be the map

N 3 n 7!

�
f(�(n))��(n) , if n 2 N 0

0 , otherwise.

Obviously, f� is in (R
A)N . Since f is in SR;A, f� is in S and �f� = f . Since h0N (f�)

is the map

N 3 n 7!

�
h0(f(�(n))��(n)) = f(�(n))h0(��(n)) , if n 2 N 0;
0 , otherwise;

we have

h0(f) = h0(�f�) = �M (h0N (f�)) = �M;Aff(a)h
0(�a) : a 2 Ag

= �M;Aff(a)h(a) : a 2 Ag = h(f);



13

proving the required uniqueness. ut

4.N-convexity theories

(4.1) De�nition. Let R be a prenormed semiring with left N-summation
(SR;�R). By a left N-convexity theory over R is meant a subset � of SR such
that
(o) k��k 2 SC and �Ck��k � 1 , for all �� 2 �,
(i) �n� 2 � , for all n 2 N ,
(ii) for all ��; �n� , n 2 N , in � the map h��; �

�
� i given byN 3 n 7! �R����n 2 R

is in �.

It is a simple consequence of (1.1), (ii) { (iv), that h��; �
�
� i satis�es (4.1), (o).

Let X be any set and denote the elements of XN by lower case letters with an
upper placeholder symbol, e. g. x� or x�.

(4.2) De�nition. Let � be a left N-convexity theory over R. By a left �-convex
module is meant a set X 6= ; together with a map

��XN 3 (��; x
�) 7! h��; x

�i 2 X

such that
(i) h�n� ; x

�i = xn , for all n 2 N , �� 2 �, x� 2 XN ,
(ii) h��; h�

�
� ; x

�ii = hh��; �
�
� i; x

�i , for all �� 2 �, ��� 2 �N , x� 2 XN .

(4.3) De�nition. Let � be a left N-convexity theory. By a homomorphism of left
�-convex modules X �! X 0 is meant a map f : X �! X 0 such that

f(h��; x
�i) = h��; f

N (x�)i ; for all �� 2 �; x� 2 XN :

Let � be an N-convexity theory. Then the totality of left �-convex modules and
their homomorphisms, with composition the set-theoretical one, form a category
�C, the category of left �-convex modules. Clearly, �C is an algebraic category.
Since it has a rank ([2], p.56), it has free objects on any set. However, we want
to construct such free objects explicitly. First, three technical statements about
�-convex modules. They correspond to [4], (2.4), (iii), (iv), and (viii), and the
proofs there carry over to the current situation with nominal changes only.

(4.4) Lemma. Let X be a left �-convex module, let �� 2 � with supp �� �
N0 � N , and let y�; z� 2 XN be such that yn = zn, for all n 2 N0. Then
h��; y�i = h��; z�i. ut

(4.5) Lemma. Let X be a left �-convex module, let �� 2 � and x� 2 X. For any
bijection � : N �! N de�ne ��� resp. �x� as the maps

N 3 n 7! ��(n) 2 R resp. N 3 n 7! x�(n) 2 X:
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Then h��; x�i = h���; �x�i. ut

(4.6) Lemma. Let X be a left �-convex module, �� and �� in �, and x� and y�

in X. Let furthermore ' : N �! N be an injection and assume

�n = �'�1(n) ; n 2 '(N); and �n = 0 ; n =2 '(N);

xn = y'
�1(n) ; n 2 '(N):

Then h��; y
�i = h��; x

�i. ut

Next we have

(4.7) Theorem. (see [3], 5.4) The forgetful functor V� : �C �! Set has a left
adjoint F�.

Proof. Let R be the prenormed semiring with left N-summation (SR;�R) that
appears in the de�nition (4.1) of �. Given any set A we de�ne F�(A) as the set
of maps f : A �! R such that card(supp f) � cardN and for some data �, ��,
A0, and N 0 in (2.2), �� 2 � holds. In order to make F�(A) a left �-convex module
we have to de�ne h��; f

�i, for all �� 2 � and f� 2 F�(A)N . According to (2.3)
we can choose �, A0 and N 0 such that for every fn 2 F�(A) � SR;A, n 2 N , the
conditions in (2.2) are satis�ed. Suppose that �n� is associated to fn via the data
�, A0 and N 0. Then �n� 2 �, for all n 2 N . Due to (4.1), (ii), h��; �

�
� i is in �

and, as is seen easily, supp h��; �
�
� i �

S
fsupp �n� : n 2 Ng � N 0. Hence there is

a unique f 2 F�(A) with supp f � A0 and f(�(n)) = h��; �
�
� i, for all n 2 N 0.

Denote this f by h��; f�i. By (2.2), f does not depend on the data chosen. It is
clear from the construction that (4.2), (i), is satis�ed. In order to verify (4.2), (ii),
it su�ces to show the existence and equality of the two terms

h��; h�
�

� ; 
�
�ii and hh��; �

�

� i; 
�
�i

for all �� 2 �, ��� 2 �N , �� 2 �N . However, the existence of these expressions is
an immediate consequence of (4.1), (ii). As for equality, consider the map ���

�
� 

�
t

given by

N �N 3 (n; p) 7! �n�
n
p 

p
t 2 R:

Since by (1.2), k�n�np 
p
t k � k�nk, it follows from (1.1), (o) and (ii), and (1.4), (o),

that the map N 3 n 7! �n�
n
p 

p
t 2 R is in SR, whence �Rf�n�np 

p
t : n 2 Ng is

de�ned. Since, due to (1.2) and (1.3), (ii),

k�Rf�n�
n
p 

p
t : n 2 Ngk � �Cfk�nkk�

n
p kk

p
t k : n 2 Ng

� �Cfk�nkk�
n
p k : n 2 Ng;

and since by (1.1), (iv), the right hand side of this inequality (as a function of p)
is in SC, it follows from (1.3), (o), that

N 3 p 7! �Rf�n�
n
p 

p
t : n 2 Ng 2 R

is in SR. Hence (1.1), (iii'), and the use of a bijection N2 �! N show that ���
�
� 

�
t

is in SR;N�N . Therefore (2.11) leads to the desired equality. Which means, that
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F�(A) is a left �-convex module. The Dirac map � : A �! F�(A) assigns to each
a 2 A the Dirac function �a at a. We claim that � : A �! F�(A) is a universal
arrow. Let X be a left �-convex module and let h : A �! X be a set map. We
want to de�ne an appropriate map h0 : F�(A) �! X. Let f 2 F�(A). Choose for
f the data �, ��, A0, and N 0 and denote by h� the map

N 3 n 7!

�
h(�(n)) , if n 2 N 0;
x0 , if n =2 N 0;

where x0 is some element of X. It follows from (4.4) { (4.6) that h��; h�i is in-
dependent of x0 and of the data chosen, and we put h0(f) := h��; h�i. Obviously,
h0(�a) = h(a), a 2 A, whence h0 � � = h holds. Next we check that h0 is a homo-
morphism of left �-convex modules. Let �� 2 � and f� 2 F�(A)N . By (2.3) we
can choose data so that they serve for all fn, n 2 N . If �n� is the element of �
associated with fn, n 2 N , via such data then

h0(h��; f
�i) = hh��; �

�

� i; h
�i;

while h��; h
0N (f�)i = h��; h�

�

� ; h
�ii;

whence the equality of the left hand sides of the last two equations follows from
(4.2), (ii), showing that h0 is a homomorphism of left �-convex modules. As for
uniqueness of the required factorization, let ~h : F�(A) �! X be a homomorphism
of left �-convex modules with ~h � � = h. For f 2 F�(A) choose the data as
above to obtain �� 2 � associated with f . Denote furthermore by ��(�) the map
N 3 n 7! ��(n) 2 F�(A). An easy computation shows that f = h��; ��(�)i. Hence

~h(f) = ~h(h��; �
�(�)i) = h��; ~h

N(��(�))i = h��; h
�i = h0(f): �

5. The associated � -convexmodule functor

(5.1) Proposition. Let � be a left N-convexity theory over R. Then there is a
functor O� : NRpnSmod1 �! �C whose object function is the following:

if M is an R-prenormed R-semimodule with N-summation then the set under-
lying O�(M) is BN(M) and the �-convex module structure on O�(M) is given
by

��O�(M)N 3 (��; �
�) 7! �M (���

�) =: h��; �
�i 2 O�(M):

Proof. Since k����k � k��k and since k��k 2 SC by (4.1), (o), it follows from
(1.1), (ii), that k���

�k is in SC and thus ���
� is in SM , due to (1.4), (o). Hence

�M (����) is well de�ned and

k�M (���
�)k � �C(k���

�k) � �C(k��kk�
�k) � �C(k��k) � 1;
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whence h��; ��i = �M (����) is in O�(M). By (1.4), (i),

h�n� ; �
�i = �Mf�

n
p�

p : p 2 Ng = �n ; for all n 2 N:

This veri�es (4.2), (i). Now denote by ���
�
� �

� the map N � N 3 (n; p) 7!
�n�

n
p�

p 2 M . Then k�n�np �
pk � k�nkk�np kk�

pk � k�nkk�np k, for all n; p 2 N .
By (1.1), (iv), the right hand side of these inequalities, as a map N �N �! C,
is in SC;N�N. Therefore k���

�
� �

�k is in SC;N�N by (1.1), (ii), and ���
�
� �

� is in
SM;N�N by (1.4), (o). Hence (2.11) and (2.12) imply

�M;N�N(���
�

� �
�) = �Mf�Mf�n�

n
p�

p : n 2 Ng : p 2 Ng

= �Mf(�Mf�n�
n
p : n 2 Ng)�p : p 2 Ng

= hh��; �
�

� i; �
�i

and

�M;N�N(���
�

� �
�) = �Mf�Mf�n�

n
p�

p : p 2 Ng : n 2 Ng

= �Mf�n(�Mf�
n
p�

p : p 2 Ng) : n 2 Ng

= h��; h�
�

� ; �
�ii;

which is (4.2), (ii). Thus the object function described in (5.1) is indeed in �C.
Finally, given f :M �!M 0 in NRpnSmod1, we obtain from (1.5), (i),

f(h�� ; �
�i) = f(�M���

�) = �M 0(fN (���
�))

= �M 0(��f
N (��)) = h��; f

N (��)i;

showing that f induces a homomorphism of �-convex modules. ut
Since the value cone C of a prenormed semiring is partially ordered, we obtain

an induced partial order on CN (it was described at the beginning of x1). If T is
a subset of CN , then inf T refers to this partial order on CN .

(5.2) Theorem. Let R be a prenormed semiring with left N-summation. Suppose
that the value cone C of R satis�es the following conditions

CO: C is complete (in the sense of [5], x1);
IS: for every T � SC, inff�C(t�) : t� 2 Tg = �C(infft� : t� 2 Tg);
LD: for every ; 6= U � C, u0 := inffu : u 2 Ug, and every t 2 C with

u0 < u0 + t there is a u1 2 U with u0 � u1 � u0 + t;
LIM: for every U � C and every c 2 C, inffcu : u 2 Ug = c inffu : u 2 Ug;
OP: for every c� 2 SC there is a d� 2 CN such that

(o) c� + d� 2 SC;
(i) if cn is not a maximal element of C (with respect to the partial

order of C) then cn < cn + dn.
Then for every left N-convexity theory � over R, O� has a left adjoint S�.

Proof. Let X be a �-convex module and denote the set underlying X again by X.
Form, as in the proof of (3.1), the R-semimodule LN (X) together with the Dirac
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map � : X �! LN (X) and consider the set

S := f(�h��;x
�i; h��; �

x�i) : �� 2 �; x� 2 XNg � LN (X) � LN (X);

where �x
�

is the map N 3 n 7! �x
n

2 LN (X). If h : LN (X) �! M is a con-
tracting homomorphism of R-prenormed R-semimodules with N-summation we
say that h is S-compatible if Sh := f(f; f 0) : h(f) = h(f 0)g � LN (X) � LN (X)
contains S. Clearly, there are such contracting homomorphisms, e.g. the zero ho-
momorphism. Let � be the intersection of all these Sh. Then � is an equiva-
lence relation, S�(X) := LN (X)= � is an R-semimodule, and the quotient map
q : LN (X) �! S�(X) is a homomorphism of R-semimodules satisfying

q(�h�� ;x
�i) = q(h��; �

x�i) , for all �� 2 �; x� 2 XN :

Now de�ne jjj jjj : S�(X) �! C by

jjjsjjj := inffjjjf jjj : q(f) = sg ; s 2 S�(X):

Since C is complete (in the sense of [5], x1), the above in�mum exists, and it
follows easily from [5], (2.10), (IA), { which is a simple consequence of (IS) { and
(LIM) that jjj jjj : S�(X) �! C is a prenorm.

Next we put SS�(X) := qN (SLN (X)). Suppose now that f�, f 0� are in SLN(X) and

satisfy qN(f�) = qN (f 0�), that is q(fn) = q(f 0n) for all n 2 N . Then (fn; f 0n) 2 �
and hence (fn; f 0n) 2 Sh for all contracting homomorphisms h : LN (X) �!M that
are S-compatible, for all n 2 N . This shows that hN (f�) = hN (f 0�) and therefore

h(�LN(X)f�) = �M (hN (f�)) = �M (hN (f 0�)) = h(�LN (X)f
0
�);

that is we obtain the relation (�LN (X)f�;�LN (X)f
0
�) 2 Sh for all such h, whence

(�LN (X)f�;�LN (X)f
0
�) 2� holds. Thus we can de�ne

�S�(X)(s�) := q(�LN (X)f�) ; s� 2 SS�(X);

where f� 2 S
N
L (X) is chosen such that gN(f�) = s�. In particular, q(�LN (X)(f�)) =

�S�(X)(q
N (f�)) for all f� 2 SLN(X). One checks easily that S�S (X) is an R-

subsemimodule of S�(X)N and that �S�(X) : SS�(X) �! S�(X) is a homomor-
phism of R-semimodules.

Next we verify (1.4), (o), for S�(X). Let s� 2 SS�(X) and choose f� 2 SLN(X)

with qN (f�) = s�. Then jjjsnjjj � jjjfnjjj, n 2 N . Since jjjf�jjj is in SC, so is
jjjs�jjj due to (1.1), (ii). Conversely, assume s� 2 S�(X)N and jjjs�jjj 2 SC. We
apply (OP) to c� := jjjs�jjj and obtain d� with the properties stated there. If
jjjsnjjj is a maximal element of C, choose f� 2 LN (X) such that q(fn) = sn.
Then jjjfnjjj = jjjsnjjj. If jjjsnjjj is not a maximal element of C, (LD) implies the
existence of an fn 2 LN (X) with q(fn) = sn and jjjsnjjj � jjjfnjjj � jjjsnjjj+ dn.
Hence f� is in LN (X) and jjjf�jjj � jjjs�jjj+ d� 2 SC, whence jjjf�jjj is in SC due
to (1.1), (ii), and thus f� is in SLN(X) by (1.4), (o). Therefore s� = qN(f�) is in
SS�(X).

(1.4), (i), is trivially satis�ed in the current situation.
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On to (1.4), (ii). It follows from (1.5) that s� 2 SS�(X) and t� 2 S�(X)N with

jjjt�jjj � jjjs�jjj implies t� 2 SS�(X). Hence there are g� 2 SLN(X) with t� = qN (g�)
and

jjj�S�(X)t�jjj = jjjq(�LN(X)g�)jjj � jjj�LN (X)g�jjj � �C jjjg�jjj;

due to (1.4), (ii), for LN (X). Hence we have

jjj�S�(X)t�jjj � inff�C jjjg�jjj : q
N (g�) = t�g

= �C(inffjjjg�jjj : q
N (g�) = t�g) = �C jjjt�jjj:

Finally (1.4), (iii). Let ' : N �! N be a map and let s� 2 SS�(X). Then there is

an f� 2 SLN(X) with s� = qN(f�). Since s
'�1(n)
� = qN (f

'�1(n)
� ) and since f

'�1(n)
�

is in SLN(X), due to (1.4), (iii), applied to LN (X), we have s
'�1(n)
� 2 SS�(X) for

every n 2 N . Moreover, by de�nition, �S�(X)s
'�1(n)
� = q(�LN(X)f

'�1(n)
� ). Since

f'
�1

� , that is the map N 3 n 7! �LN (X)f
'�1(n)
� 2 LN (X), is in SLN(X) it follows

that s'
�1

� is in SS�(X). Finally

�S�(X)s
'�1

� = q(�LN (X)f
'�1

� ) = q(�LN (X)f�) = �S�(X)s�:

Thus we have shown that S�(X) is an R-prenormed R-semimodule with left N-
summation (SS�(X);�S�(X)).

Additionally we claim that q : LN (X) �! S�(X) is a contracting homomor-
phism of R-prenormedR-semimodules with left N-summation. (1.5), (i), is obvious
from the construction of S�(X), while (1.5), (ii), { with c = 1 { was established
in the above veri�cation of (1.4), (ii).

What remains to be done is to show that BN (q) � � : X �! O�(S�(X)) is
a universal arrow. Since q is a homomorphism of R-prenormed R-semimodules
with N-summation, BN (q) � � is a homomorphism of left �-convex modules. Let
h : X �! O�(M) be such a homomorphism. Due to (3.1) there is a contrac-
tive homomorphism h0 : LN (X) �! M of R-prenormed R-semimodules with
N-summation with BN(h0) � � = h. Since h is a homomorphism of left �-convex
modules, h0 is S-compatible and hence gives rise to a factorization h0 = h00 � q,
where h00 : S�(X) �! M is a contractive homomorphism of R-prenormed R-
semimodules with N-summation. Hence h = BN(h00 � q) � �, which is the required

factorization. We claim that h determines h uniquely. So, let eh � q � � = h be
another factorization. Each s 2 S�(X) can be written as q(f), with f 2 LN (X).
Due to (2.4), f equals �LN (X)(���

�(�)), where � : N �! A is a suitable map and
�� 2 SR is chosen appropriately. Hence we have

eh(s) = eh(q(f)) = eh(q(�LN (X)(���
�(�))))

= �M (��(eh � q)N (��(�))) = �M (��eh�(�));
where eh�(�) is the mapN 3 n 7! h(�(n)) 2 O�(M). Thus h determines h uniquely.
ut
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6. Examples

Clearly, every positive semiring C has (C(N);
P0

C), with
P0

C the usual sum in C,
as a left N-summation. Similarly, every prenormed semiring R has (R(N);

P0
R)

as a left N-summation, just as (M (N);
P0

N ) is a left N-summation for every R-
prenormed R-semimodule. This means that the positive (resp. prenormed) semi-
rings, the R-prenormed R-semimodules, and the �nitary convexity theories dis-
cussed in [5], x1 - x3, are special cases of the notions investigated in the present
paper.

One checks quite easily that the Banach semirings R discussed in [5], x6, are
another instance of the concepts treated here. The cone of such a Banach semiring
R has to satisfy suitable properties (see [5], 4.14 and 4.15); SC is then the subset of
CN consisting of all those �� for which ��� has a limit (in the sense of [5], x4), while
�C�� := supf�n : n 2 Ng. In addition, SR is the set of those �� 2 RN for which
��� is an absolute Cauchy sum (in the sense of [5], x4), while �R�� is the limit (in
the sense of [5], x4) of the in�nite sum

P
��. Analogously one obtains (SM ;�M )

for each Banach R-semimoduleM ; in particular, each Banach R-semimodule is an
R-prenormed R-semimodule with N-summation in current terminology, while the
converse in general fails to be correct. However, if C := R+ = fr 2 R : r � 0g,
R := R, k k : R�! R+ is the usual absolute value, and SC is the set of all �� 2 RN

+

for which
P
�� converges and �C�� =

P
�� then the Banach spaces overR (in the

sense of functional analysis) are precisely the R-prenormed R-semimodules with
n-summation as follows from a well known characterization of Banach spaces ([6],
3.1.2).

Now we want to characterize explicitly the concepts of the present paper in the
case where the semiring involved is the smallest semiring that is not a ring. De�ne
on the two-element set f0; 1g
addition by 0 + 0 = 0; 0 + 1 = 1+ 0 = 1 + 1 = 1;
multiplication by 0 � 0 = 0 � 1 = 1 � 0 = 0; 1 � 1 = 1;
partial order by 0 < 1:
Then f0; 1g equipped with this structure is a complete, commutative, and unital
semiring D . De�ne an N-summation on D by putting SD := D

N and �D �� :=
maxf�n : n 2 Ng. One checks easily that these data make D a positive semiring
with N-summation.

Put R := D and de�ne k k : R �! D by krk := r, r 2 R. Let furthermore
SR := D

N and �R := �D . ThenR = D is a prenormed (even normed) semiring with
N-summation. A D -prenormed D -semimoduleM is commutative, idempotent (i.e.
m+m = m for allm 2M) monoid together with a submonoidM0 (corresponding
to fm 2M : kmk = 0g); one check easily that M0 can be an arbitrary submonoid
of M . The monoid M has the additional property that 0 is the only element of
M that possesses an (additive) inverse. Next we de�ne \m1 �m2" as \there is an
m 2M with m1 +m = m2", for all m1;m2 2M . One checks easily that this is a
partial order relation onM (in particular,m1 � m2 andm2 � m1 implym1 =m2)
that is compatible with the additive monoid structure on M . With respect to this
order relation,M has �nite suprema and supfm1; : : : ;mng =m1+: : :+mn. Hence
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M0 is closed under �nite suprema. If the D -prenormed D -semimodule M has N-
summation (SM ;�M ) then (1.4), (o), implies SM =MN . If �� 2MN and T � N
we denote by �T� the map given by �T� jT = ��jT and �T� jN rT = 0�jN rT . Then
(1.4), (iii), shows that �M�T� � �M�� holds for all �� 2 MN and T � N . It follows
from (3.1) that for every m 2M , m = �Mm� is valid. An immediate consequence
of this is �M�� = supf�n : n 2 Ng. This means that M has N-suprema, that is
suprema of all subsets of M of cardinality � cardN .

Conversely one checks easily that any commutative, idempotent, partially or-
dered monoidM with a distinguished submonoidM0 such that the partial order is
compatible with the monoid structure and hasN-suprema is in fact a D -prenormed
D -semimodule with N-summation (MN ;�M ), where �M�� = supf�n : n 2 Ng.

Let �D := D
N . It is easy to see that �D is an N-convexity theory over D . Let

X be a �-convex module. Then we say that for x1; x2 2 X the relation x1 � x2 is
valid precisely when there are �� 2 � and x� 2 XN such that

(i) there is an i 2 supp �� with xi = x1,
(ii) h��; x�i = x2.

One checks easily that this de�nes a partial order on X and that (with respect to
this partial order) X has N-suprema. In fact, h��; x�i = supfxn : n 2 supp ��g.
Moreover, if Y � X is a subset of cardinality � cardN , let ' : Y �! N be an
injective map, and de�ne �� resp. x� as the maps (with y0 2 X chosen arbitrarily)

N 3 n 7!

�
1 , if n 2 im';
0 , otherwise;

resp. N 3 n 7!

�
y , if n = '(y);
y0 , otherwise.

Then sup(Y ) = h��; x�i.
Conversely, if X is a partially ordered set that has N-suprema, de�ne

h��; x
�i := supfxn : n 2 supp ��g ; �� 2 � and x� 2 XN :

A simple computation shows that this makes X a �D -convex module. Finally one
concludes from (4.3) that a map f : X �! X 0 between �D -convex modules is
a homomorphism of �D -convex modules precisely when for each subset Y � X
of cardinality � cardN , sup(f(Y )) = f(sup(Y )) gilt. Hence the category �DC
is isomorphic to the category of partially ordered sets with N-suprema and N-
suprema preserving maps.

Instead of �D one could take the set �D ; of all �� 2 �D with card(supp ��) <
cardN . A simple computation shows that �D ; is an N-convexity theory over D .
Then one obtains the same results as in the case of �D except that the requirement
\existence of the supremum of every subset Y with cardY � cardN" has to be
replaced by the requirement \existence of the supremum of every subset Y with
cardY < cardN".

Instead of �D one could take the set �D r f0�g. Again it is easy to see that
�D ;sc := �D r f0�g is an N-convexity theory over D . Again, as before, the same
results remain in force, except that the subsets Y in question now have to be
nonempty. It should be pointed out, that �D ;sc is the D -analog to the supercon-
vexity theory 
sc := f�� 2 R

N : �n � 0; for all n 2 N; and �N �n = 1g. The
D -analog to the classical convexity theory 
c := f�� 2 
sc : supp �� is �niteg is
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then �D ;c := f�� 2 �D ;sc : supp �� is �niteg; results similar to the above hold for
�D ;c .
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