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Abstract

Quantum groups can be introduced in various ways. We use their functorial

construction as automorphism groups of noncommutative spaces. This construc-

tion shows in particular why quantum groups should not be considered as groups

in the categorical sense.

The linear representations of an ordinary group form a symmetric monoidal

category. Because of their noncommutativity quantum groups do not have this

symmetry of the tensor product of representations. In many cases, however, it can

be replaced by a braiding, for example in the category of Yetter-Drinfeld modules

or of modules over a quasitriangular Hopf algebra.

A generalization of the de�nition of Yetter-Drinfeld modules leads to a cate-

gorical riddle: an example of a universal-couniversal problem, that is de�ned by a

simultaneous unit and counit.

Introduction

In this survey paper we want to give an introduction to quantum groups using a
functorial construction. It is well known to the specialists that quantum groups are
not groups in a category. We discuss how close they are to categorical groups. This
slight generalization leads to an unusual behavior of their representations. To get
a similar representation theory as for groups one imposes a braid structure on the
category of representations. We discuss what kind of elements of a quantum group are
responsible for such braid structures and where such braid structure occur naturally.

1 Quantum Automorphism Groups of Noncommutative

Spaces

Quantum groups arose from the deformation of function algebras of (Lie-)groups. Func-
tion algebras of (Lie-)groups and more generally of manifolds are automatically com-
mutative, because the functions have values in the �eld of complex numbers or an
arbitrary �eld). But quantum physics requires noncommutative function algebras.
Deformation techniques have been successfully applied to classical Lie-groups and to
universal enveloping algebras of Lie-algebras to construct quantum groups. In this sur-
vey paper we want to pursue a di�erent approach. We will construct quantum groups
as automorphism groups of noncommutative spaces.
It is a classic technique to describe geometric spaces X through their function algebra

O(X ) = Fun(X ;C). For example state spaces in physics are described by their algebra
of observables. Under suitable assumptions this leads to a duality between the category
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of geometric spaces and of commutative algebras. Famous examples are the duality of
the Gelfand-Naimark Theorem and the duality between a�ne algebraic manifolds and
�nitely generated commutative algebras.
Quantum theory forces us to consider noncommutative algebras as \function alge-

bras" of noncommutative geometric spaces or quantum spaces. Thus we de�ne

De�nition 1.1 (Manin [6]) The category of quantum spaces or of noncommutative
spaces is the dual of the category of noncommutative (not necessarily commutative)
algebras.

This de�nition should be su�cient for a categorical minded reader. But somehow one
is missing the corresponding geometric structures. There have been several attempts
to make geometric structures visible. One of the simplest is the following.
The category of quantum spaces can be identi�ed with the category of covariant rep-

resentable functors on the category Alg of not necessarily commutative algebras. Thus
a quantum space X with given function algebra A can be viewed as the representable
functor X (B) := Alg(A;B). The elements of X (B) are called the B-points of X .
These sets X (B) can be considered as a replacement for a geometric space associated

with the function algebra A. Indeed if A is represented as

A = khx1; x2; : : :i=(p1(xi); p2(xi); : : :);

a residue class algebra of the noncommutative polynomial ring (free algebra) on the
variables x1; x2; : : :, then each B-point f : A �! B is described by the values b1; b2; : : :
(with bi := f(xi)) that are zeros of the polynomials p1(xi); p2(xi); : : :. So X (B) can be
considered as the set of zeros of certain noncommutative polynomials with coordinates
in B.
We want to construct groups in the category of quantum spaces. For this purpose

we need to know the \product" of two quantum spaces. There are various reasons
based in physics as well as in algebra not to use the categorical product. We introduce
a product that is much \smaller" than the categorical product. Quantum groups will
be de�ned with respect to this smaller product.

De�nition 1.2 Let X and Y be quantum spaces. Then their orthogonal product is
de�ned by

(X ? Y)(B) :=
f(�; �) 2 X (B) � Y(B) j8a 2 O(X ); a0 2 O(Y) : �(a)�(a0) = �(a0)�(a)g :

The B-points � and � are called commuting points. (The images of the functions � and
� in B commute.)

The functor X ? Y is a representable functor and thus a quantum space with
representing algebra O(X )
O(Y). The orthogonal product de�nes the structure of a
monoidal category on the category of quantum spaces.
We want to de�ne an automorphism group for a quantum space X , in the category of

quantum spaces. That means the group to be constructed should live in the category
of quantum spaces and should act in a suitable way on an other quantum space. For
all considerations we use the orthogonal product instead of the categorical product.
We begin with the notion of an action of one quantum space M on another quantum
space X .
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De�nition 1.3 Let X and M be quantum spaces. A (left) action of M on X is a
morphism � :M? X �! X .

An action � :M? X �! X is called a universal action if for every action � : Z ? X
�! X there is a unique factorization f : Z �! M such that the following diagram
commutes:

Z ? X

?
f?1

M? X X-
�

�

Q
Q
Q
QQs

:

It is an open question under which general conditions on X such universal actions
exist. But we have the following

Theorem 1.4 (Tambara [13]) Let X be a quantum space with �nite dimensional
representing algebra A. Then there exists a universal action of a quantum space on X .

A universal action performs a surprising little magic. It turns out that a universal
action automatically carries a natural structure of a monoid and that this structure
comes in such a way that the action on the quantum space X is a monoid action i. e. it
is associative with unit. Furthermore the monoid structure and the monoid action are
de�ned with respect to the orthogonal product, not with respect to the categorical
product.

Proposition 1.5 Let � :M? X �! X be a universal action. Then M is in a unique
way a monoid in the monoidal category of quantum spaces with tensor product ? such
that it acts on X by a monoid action (associative with unit).

Sketch of proof: The proof is actually quite simple. We give only the de�nition of
the multiplication of the monoid. The commutative diagram

?
�?id

M? X X-
�

M?M? X M? X-id?�

?
�

de�nes by the universal property of the action a unique morphism � :M?M�!M.
For this multiplication of M the action becomes associative by the same diagram. We
leave the rest of the proof to the reader. A complete proof can be found in [8].

Thus M can be considered as the endomorphism monoid of X . It is called the
quantum endomorphism monoid of X . It turns out to satisfy an additional universal
property, it is the universal monoid acting on X by a monoid action.

Remark 1.6 The universal action and the monoid structure of M translates back
into the representing algebras as a universal algebra homomorphism A �! B 
 A,
the structure of a bialgebra on B (algebra plus coalgebra plus compatibility) and the
structure of a B-comodule algebra on A through the algebra homomorphism A �!
B 
 A. In particular every �nite dimensional algebra A has a universal bialgebra B
that makes A into a B-comodule algebra.
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Thus we have achieved part of our task to �nd a quantum automorphism group of a
quantum space. In the simplest set theoretic situation we would now have to collect the
invertible endomorphisms of X and we would then obtain the automorphism group with
all its universal properties. But picking elements in M and checking for invertibility
is not quite the right way in the situation of quantum spaces. So we will be looking
for submonoids A ofM that have something like an \invert" function S : A �! A and
hopefully pick the best such submonoid.
Since a reasonable inverse function S : A �! A does not exist for most quantum

monoids (it cannot exist if the quantum monoid is a proper noncommutative space,
i. e. the function algebra is noncommutative and if the multiplication of the quantum
monoid is also noncommutative) we have to go to the corresponding function algebras.
And there, indeed, we may �nd an inverse function S : H �! H that behaves very
much like forming inverses in a group. The problem is that this inverse function,
usually called the antipode, is only a linear map and not an algebra homomorphism.
We de�ne the inverse or antipode by

De�nition 1.7 A bialgebra H is called a Hopf algebra if there is a (unique) (linear)
map S : H �! H , the antipode, such that the diagram

H C-
"

H-
�

?
�

H 
H H 
H-S
1
-

1
S

6
r

commutes.

The antipode of a Hopf algebra is unique and it is an algebra antihomomorphism
and a coalgebra antihomomorphism.
This de�nition was used by Drinfeld

De�nition 1.8 (Drinfeld [3]) A quantum group is (the dual of) a (noncommutative
and noncocommutative) Hopf algebra.

The next problem we face is to �nd a universal quantum subgroup of a given quantum
monoid. This would then represent the set of invertible elements of the monoid. This
problem has already been solved many years ago by M. Takeuchi on the function
algebra side.

Theorem 1.9 (Takeuchi [14]) Let B be a bialgebra. Then there exists a universal
Hopf algebra H(B) together with a bialgebra homomorphism B �! H(B).

This guarantees that we may adjoin an antipode to any given bialgebra. Translated
back into the language of quantum spaces the theorem says that for every quantum
monoid M there is a universal quantum group G(M) together with a homomorphism
of quantum monoids G(M) �!M.
In the language of set theoretic monoids and groups this amounts to the construction

of the group of invertible elements G(M) of a monoidM . We have obtained the correct
functor for the \quantum automorphism group" of a quantum space X . Indeed we have

Corollary 1.10 Let X be a quantum space that possesses a universal action. Then
there is a universal quantum group G acting on X by a monoid action (or as an
automorphism group).
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2 Braidings and Representations of Quantum Groups

Let G be a group (in the category of sets). A (complex vector space) representation
of G is a complex vector space P together with a module action C[G] 
 P �! P .
The representations of a group have two properties that we would like to see for
representations of quantum groups as well.
Given two representations P and Q of G then P 
 Q is also a representation of G

with the action g � (p
q) := gp
gq. With this tensor product the category C[G]-Mod
becomes a monoidal category.
This monoidal category is symmetric with the symmetry map � : P 
 Q 3 p 
 q 7!

q
 p 2 Q
 P . One easily checks that this is a natural isomorphism of C[G]-modules.
The function algebra of G is CG, the commutative algebra of maps from G to C. If

G is a �nite group then the isomorphism

Hom(K[G]
 P; P ) �= Hom(P; P 
CG)

transforms every module action of C[G] on P to a comodule action of CG = C[G]� on
P . Thus the category of CG-comodules is equivalent to the category of C[G]-modules
or representations of G.
Since the bialgebra B from the previous section is a function algebra and the Hopf

algebra H(B) is to be considered as a function algebra as well, the representations of
these bialgebras should be comodules over B resp. over H(B). Comodules over B also
form a monoidal category with �(p
q) =

P
p(0)
q(0)
p(1)q(1) 2 P 
Q
B (Sweedler

notation).
Since the axioms for bialgebras B or Hopf algebras H are self dual, representations

could be de�ned to be modules or comodules over B resp. H . Both de�nitions give a
monoidal category.
The principal question is now if the monoidal category of H-modules or of H-

comodules is symmetric or has at least a good interchange map � : P 
Q �! Q
P . If
H is cocommutative then the category H-Mod is symmetric by the usual interchange
map �(p 
 q) = q 
 p. If H is commutative then the category Comod-H is also sym-
metric by the usual interchange map �(p
 q) = q 
 p. In general, however, this is not
the case.
To introduce the appropriate terminology we de�ne

De�nition 2.1 Let C be a monoidal category. A natural isomorphism � : P 
 Q
�! Q
 P in C is called a braiding if the following diagrams commute:

P 
Q
 R R
 P 
 Q-�(P
Q;R)

P 
 R
Q

1
�(Q;R)
HHHHj

�(P;R)
1
��
��*

P 
Q
 R Q
 R
 P-�(P;Q
R)

Q
 P 
R

�(P;Q)
1
HHHHj

1
�(P;R)
��
��*

commute. (We assume that C is strict, so that we may omit the associativity mor-
phisms.)



6 Bodo Pareigis

We now restrict our discussion to right H-modules over a Hopf algebra H with
bijective antipode S and develop necessary and su�cient conditions for Mod-H to
have a braiding. Similar considerations hold for comodules.

Before we introduce a suitable interchange map � : P 
 Q �! Q
 P , let us study a
simpler case of a natural transformation.

We consider the following universal problem. Given an element h 2 H . Then this
element induces a natural transformation �h : ! �! ! for the underlying functor
! : Mod-H �! Vec by the commutative diagram

!(P )

?
1
h

!(P )
H !(P )-�

�h

Q
Q
Q
QQs

Instead of �(P ) : !(P ) �! !(P ) we simply write � : P �! P . This leads to the
universal problem:

Theorem 2.2 (Pareigis [9]) For every natural transformation � : P �! P (in Vec)
there is a unique h 2 H such that

P

�

P

=

P

h

��

P

:

Actually this theorem says that the algebra H can be reconstructed from the natural
endomorphisms of the underlying functor ! : Mod-H �! Vec.

Now we study a similar universal problem for the tensor product ! 
 !.

Proposition 2.3 For every natural transformation � : P 
 Q �! Q 
 P there is a
unique R 2 H 
H such that

P Q

�

Q P

=

P Q

R

�� ��

Q P

:

It turns out that the natural transformation � : P 
 Q �! Q 
 P is a braiding for
the category of right H-modules i� R satis�es the axioms of a universal R-matrix, i. e.

1. R is invertible in H 
H ,

2. �(�(h)) = R�(h)R�1,

3. (�
 id)R = R13R23,

4. (id 
�)R = R13R12,
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where R12 = R 
 1, R23 = 1 
 R, and R13 =
P
R1 
 1 
 R2 (with R =

P
R1 
 R2).

A Hopf algebra together with a universal R-matrix is called a quasitriangular Hopf
algebra. This is actually what one would like to call a quantum group. But the
de�nition given in the �rst section has now been generally accepted, especially in view
of the fact that there are also coquasitriangular Hopf algebras, i. e. the category of
comodules is braided.
In statistical physics these universal R-matrices provide solutions for the quantum

Yang-Baxter equation.
So it is of great interest to know if quasitriangular Hopf algebras exist and how to

construct them. We will come back to this question later on.

3 Braidings and Yetter-Drinfeld Modules

There is another setup of Hopf algebras that provides braidings for free. Let us consider
the category of vector spaces P that are right H-modules and right H-comodules at
the same time together with the following compatibility condition:

X
(p(0) � h(1))
 p(1)h(2) =

X
(p � h(2))(0) 
 h(1)(p � h(2))(1)

or

P H
PP ��

�� 
	
P H

=

P H
��

��
PP


	
P H

:

These modules form the category YDH
H of Yetter- Drinfeld modules over H . The

compatibility condition has been known for long in the case of crossed G-sets over a
group G. The magic of this compatibility condition is

Proposition 3.1 (Yetter [15]) The category of Yetter-Drinfeld modules YDH
H is a

braided monoidal category with the braiding

�(P;Q) : P 
 Q �! Q
 P; p
 q 7!
X

q(0) 
 p � q(1)

or
P Q

PP

��

Q P

:

So every quantum group gives rise to a braided monoidal category, the category
YDH

H .
Actually one has an almost universal property.

Theorem 3.2 (Yetter [15]) Let C be a small strict braided monoidal category to-
gether with a monoidal functor F : C �! Vecf to the category of �nite dimensional
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vector spaces. Then there is a Hopf algebra H and a factorization

Vecf Vec--
?
!

C YDH
H

-eF

?
F

where eF preserves the braiding.

So any study of braidings on �nite dimensional vector spaces reduces to the study
of Yetter-Drinfeld modules. This construction explains also the famous construction
of the Drinfeld double:

Theorem 3.3 Let H be a �nite dimensional Hopf algebra. Then the category of
Yetter-Drinfeld modules YDH

H is equivalent as a monoidal category over Vec to the
category of right modules Mod-D(H) over the Drinfeld double D(H) = H 
H� (with
appropriate Hopf algebra structure). In particular Mod-D(H) is braided and thus D(H)
is quasitriangular.

The famous construction of the Drinfeld double for �nite dimensional Hopf algebras
provides a wealth of quasitriangular Hopf algebras and thus of solutions of the quantum
Yang-Baxter equation.

4 Braidings and Double Quantum Groups

In the category of Yetter-Drinfeld modules (and over the quasitriangular Drinfeld dou-
ble) we see H-modules and H-comodules simultaneously. We now study the question
if a similar setup with two di�erent Hopf algebras is possible.

De�nition 4.1 (Brzezinski [1, 2]) Let H be an algebra and K be a coalgebra and
let  : K 
H �! H 
K be a linear map such that the following hold

KH H

	

e

HK

=

KHH

e
e


	
H K

K
r
e

H K

=

K
r

H K

KH

e

��

HKK

=

K H
��
e

e

HKK

KH

e
r

H

=

KH

r

H

:

Then (H;K;  ) is called an entwining structure. The map  is called an entwining
map.
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De�nition 4.2 Let MK
H( ) be the category of objects that are simultaneously K-

comodules and H-modules (P; �P : P �! P 
 K; �P : P 
 H �! P ) such that with
respect to an entwining structure (H;K;  )

�P�P = (�P 
K)(P 
  )(�P 
H)

or
P H
��

PP

P K

=

P H
PP
e

��

P K
holds. These objects will be called entwined modules. Morphisms shall be H-module
and K-comodule morphisms.

We consider the following biuniversal problem. Given a homomorphism f : K �! H

in Vec. Then this homomorphism induces a natural transformation �f : ! �! ! for
the underlying functor ! :MK

H( ) �! Vec by the commutative diagram

!(P ) !(P )
K-�

?

1
f

!(P )
H !(P )-
�

PPPPPPPPPq

Instead of �f (P ) : !(P ) �! !(P ) we write again � : P �! P . This leads to the
\biuniversal" problem:

Theorem 4.3 (Hobst-Pareigis [4]) For every natural transformation � : P �! P

(in Vec) there is a unique f : K �! H such that

P

�

P

=

P
PP
f

��

P

:

If H is a bialgebra, then the tensor product of two H-modules is again an H-module
by the diagonal multiplication. Similarly, if K is a bialgebra, then the tensor product
of two K-comodules is a K-comodule by the codiagonal comultiplication. Furthermore
I(= C) is a unit object for the tensor product if endowed with the trivial H-structure
resp. the trivial K-structure. We want to study conditions under which MK

H( ) be-
comes a monoidal category with the given multiplication and comultiplication on the
tensor product of two modules. The underlying functor will then preserve the tensor
product, i.e. it will be a monoidal functor.

Theorem 4.4 [4] Let H and K be bialgebras. The category MK
H( ) is monoidal i�

the following additional compatibility conditions for the entwining map  : K 
 H

�! H 
K hold:
KKH

	

e

��

H HK

=

KK H
��

e e


	
H H K
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and
H
r
e
r

K

=

H
r

r

K
If these conditions are satis�ed we call (H;K;  ) a monoidal entwining structure and
 a monoidal entwining map. The tensor product P 
 Q of modules P;Q 2 MK

H( )
becomes an object in MK

H( ) with the diagonal module and the codiagonal comodule
structure.

An extension of Theorem 4.3 and Proposition 2.3 is

Theorem 4.5 (Hobst-Pareigis [4]) For every natural transformation � : P 
 Q

�! Q
 P there is a unique r : K 
K �! H 
H such that

P Q

�

Q P

=

P Q

PP PP

r

�� ��

Q P

:

Now we have all the basic tools to determine when MK
H( ) becomes a braided

monoidal category.

Theorem 4.6 [4] The natural transformation � : P 
 Q �! Q 
 P is a braiding for
MK

H( ) if and only if the following conditions are satis�ed:

1. � is a morphism of H-modules or equivalently

KK H
��

e e

r


	


	
H H

=

KK H

r
��


	
	
H H

:

2. � is a morphism of K-comodules or equivalently

K K
��

��

r

e e


	
H H K

=

K K
����

r 
	

H H K

:
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3. � is an isomorphism or equivalently there exists a map s : K
K �! H
H such
that

K K
����

r

e e

s


	
	
H H

=

KK

r r
r r

H H

=

K K
����

s

e e

r


	
	
H H

:

4. � is compatible with tensor products or equivalently

KKK

	

r

��

HH H

=

K KK
��

r

e
r


	
HH H

and

KKK

	

r

��

H H H

=

KK K
��

r

e

r


	
H H H

:
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