Final Exam in Functional Analysis

Surname:									
Given name:									
Date of birth:									
Problem			_		_	_		_	
Max. points	15	15	15	15	15	15	15	15	120

Time: 150 minutes

Materials allowed for use: Pen (blue or black), pencil. If you need extra paper, please raise your hand. You cannot use your own paper. This booklet has 9 sheets (8 problems). Please put your name on ALL SHEETS.

100 points are counted as 100%.

Solutions should contain all necessary intermediate steps. Results without sufficient proofs will not be accepted.

Solutions can be written in German or in English.

NAME:

Problem 1. Let $f \in L^3(1, +\infty)$, and let $g(x) = f(e^x)$ for $x \in (0, +\infty)$. Prove that $g \in L^2(0, +\infty)$.

NAME:	 	 	

Problem 2.

Let \mathcal{H} be a Hilbert space. Suppose that $f_n \stackrel{n \to \infty}{\longrightarrow} f$ weakly in \mathcal{H} , and $||f_n|| \stackrel{n \to \infty}{\longrightarrow} ||f||$. Prove that $f_n \stackrel{n \to \infty}{\longrightarrow} f$ in norm.

NAME:	
-------	--

Problem 3. Prove that the space $X = \{(x_1, x_2, \ldots) \in l^1 \cap l^2 | \sum_{n=1}^{\infty} x_n = 0 \}$ is dense in l^2 .

NAME:	

Problem 4.

Using Fourier series, solve the partial differential equation

$$u_{xx} + u_{xy} + u_{yy} = \cos x \cos y,$$

where u=u(x,y) is a twice continuously differentiable periodic function on $[0,2\pi]\times[0,2\pi]$.

NAME:	

Problem 5.

Let $A = \{(x,y) \in \mathbb{R}^2 : x^2 \leq y\}$ and $B = \{(x,y) \in \mathbb{R}^2 : x > 0, y \leq \ln x\}$. Find a linear functional on \mathbb{R}^2 which separates A and B.

NAME:	

Problem 6.

Prove that there exists $f \in (l^{\infty})^*$, $f \neq 0$, such that f(x) = 0 for any periodic $x \in l^{\infty}$. (We call a sequence $x = (x_1, x_2, ...)$ periodic if there exists $N \in \mathbb{N}$ such that $x_{n+N} = x_n$ for any n.)

I	NAME:	 •••••	 	 			

Problem 7.

Let X, Y be normed spaces, and $T: X \to Y$ a linear operator. Suppose that if a sequence x_n converges weakly to 0 in X, then Tx_n converges weakly to 0 in Y. Prove that T is bounded.

I	NAME:	 •••••	 	 			

Problem 8.

Let X,Y,Z be Banach spaces. Let $T:X\to Y$ and $J:Y\to Z$ be linear operators. Suppose that J is bounded and injective, and JT is bounded. Prove that T is bounded. [Hint: closed graph theorem]