

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2012-2013 / Wintersemester 2012-2013

Mathematical Quantum Mechanics – Mid-term exam, 13.12.2012 Mathematische Quantenmechanik – Zwischenklausur, 13.12.2012

Name: / Name:								
Matriculation number:/Matri	Semester: / Fachsemester:							
Degree course: / <i>Studiengang:</i>	□ Diplom □ TMP □	 Bachelor Master, 	r, PO PO	🖵 Lehr	ramt Gymnasii ramt Gymnasii	um (modularisiert) um (nicht modul.)		
Major:/Hauptfach: 🗅 Mathem	atik 🗅 Wir	tschaftsm.	🗅 Informatik	🗅 Physik	🗅 Statistik	D		
Minor:/Nebenfach: Mathematical Mathematicae Mathematicae Mathematicae Mathematicae Mathematicae	atik 🗅 Wir	tschaftsm.	🗅 Informatik	🗅 Physik	🗅 Statistik	•		
Credits needed for:/Anrechnu	ng der Credi	t Points für	das: 🗅 Haupt	fach 🗅 Ne	ebenfach			
Extra solution sheets submitt	ed:/Zusätzl	ich abgegeb	ene Lösungsblä	<i>tter:</i> 🖵 Ye	s 🖵 No			

problem	1	2	3	4	5	6	\sum
total marks	20	20	20	20	20	20	120
scored marks							

INSTRUCTIONS:

- This booklet is made of fourteen pages, including the cover, numbered from 1 to 14. The test consists of six problems. Each problem is worth 20 marks. 100 marks are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-size "cheat sheet" (Spickzettel).
- Raise up your hand to request extra sheets or scratch paper. You are not allowed to use your own paper.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in English or in German. Put your name on every sheet you hand in.
- You have 100 minutes.

GOOD LUCK!

PROBLEM 1. (20 marks)

Compute

$$\int_{-\infty}^{+\infty} \frac{\sin^2 x}{x^2} \,\mathrm{d}x \,.$$

SOLUTION TO PROBLEM 1 (CONTINUATION):

PROBLEM 2. (20 marks)

Prove that for any $u \in \mathcal{D}'(\mathbb{R})$ satisfying

$$x \, u' + u = 0$$

in the distribution sense, there exist constant $c_1, c_2 \in \mathbb{C}$ such that

$$u = c_1 \,\delta_0 + c_2 \operatorname{PV}\left(\frac{1}{x}\right).$$

(Notation: $\mathcal{D}'(\mathbb{R})$ is the space of distributions on \mathbb{R} , δ_0 is the delta distribution at zero, $PV(\frac{1}{x})$ is the principal value distribution.)

Hints: (1) You may use the fact that the solution to T' = 0 in $\mathcal{D}'(\Omega)$ is the constant distribution. Use this to find the action of u on test functions of the form $x\phi, \phi \in \mathcal{D}(\mathbb{R})$.

(2) You may also use the following straightforward consequence of Taylor's formula, precisely as we did in homework Exercise 9(ii): if $\phi \in C_0^{\infty}(\mathbb{R})$ and $\chi_{\phi} \in C_0^{\infty}(\mathbb{R}, [0, 1])$ is such that $\chi_{\phi} \equiv 1$ on the support of ϕ , then $\exists \psi \in C^{\infty}(\mathbb{R})$ such that

$$\phi(x) = \phi(x)\chi_{\phi}(x) = (\phi(0) + x\psi(x))\chi_{\phi}(x) \qquad \forall x \in \mathbb{R}.$$

SOLUTION TO PROBLEM 2 (CONTINUATION):

PROBLEM 3. (20 marks)

Let $d \in \mathbb{N}$. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in $H^1(\mathbb{R}^d)$ and let $f \in H^1(\mathbb{R}^d)$. Assume that

 $f_n \rightharpoonup f$ as $n \to \infty$ weakly in $H^1(\mathbb{R}^d)$.

Prove that

 $f_n \rightharpoonup f$ as $n \to \infty$ weakly in $L^2(\mathbb{R}^d)$.

SOLUTION TO PROBLEM 3 (CONTINUATION):

PROBLEM 4. (20 marks)

Consider the complex Hilbert space $\mathcal{H} = L^2[-1, 1]$ and the bounded linear operators

$$A: \mathcal{H} \to \mathcal{H}, \qquad (Af)(x) = xf(x), B: \mathcal{H} \to \mathcal{H}, \qquad (Bf)(x) = x^2 f(x),$$

for all $x \in [-1, 1]$ and $f \in L^2[-1, 1]$. Correspondingly, let \mathcal{A}_A and \mathcal{A}_B be the C^* -subalgebras of $\mathcal{B}(\mathcal{H})$ generated respectively by A and by B. (That is, \mathcal{A}_A consists of the closure in the operator norm of all polynomials of A. A^* is not mentioned simply because $A^* = A$. The same for \mathcal{A}_B .)

(i) Consider the functions **1** and θ in \mathcal{H} defined by

$$\mathbf{1}(x) := 1 \quad \forall x \in [-1, 1], \qquad \qquad \theta(x) := \begin{cases} 1 & \text{if } x \in [0, 1] \\ 0 & \text{if } x \in [-1, 0) \end{cases}.$$

Prove that 1 is cyclic for \mathcal{A}_A while θ is not.

(ii) Prove that \mathcal{A}_B has *no* cyclic vectors.

(*Hint:* if f was cyclic, define $g(x) := \overline{f(-x)} \operatorname{sgn}(x)$.)

SOLUTION TO PROBLEM 4 (CONTINUATION):

PROBLEM 5. (20 marks)

Consider the three-dimensional Hamiltonian $H = -\Delta + V$ where $V \in L^{\infty}(\mathbb{R}^3)$. Assume that for some $E \in \mathbb{R}$ and some $\psi \in L^2(\mathbb{R}^3)$ one has

$$-\Delta\psi + V\psi = E\psi$$

as an identity of L^2 -functions. Prove that $\psi \in L^{\infty}(\mathbb{R}^3)$.

(*Hint:* for such a ψ prove and use the inequality $\|\psi\|_{\infty} \leq a \left(\|\Delta\psi\|_2 + \|\psi\|_2\right)$ for some a > 0.)

SOLUTION TO PROBLEM 5 (CONTINUATION):

PROBLEM 6. (20 marks)

Let $V : \mathbb{R}^3 \to \mathbb{R}$ be a measurable function. For any $\lambda > 0$ let $E_0(\lambda)$ denote the ground state energy of $-\Delta + \lambda V$. Assume that

- (a) $V \in L^{3/2}(\mathbb{R}^3)$,
- (b) $\lim_{|x|\to\infty} V(x) = 0,$
- (c) $E_0(\lambda_0) < 0$ for some $\lambda_0 > 0$.
- (d) V(x) < 0 for almost every $x \in \mathbb{R}^3$.

Prove that under the assumptions (a), (b), (c), and (d), the function $[\lambda_0, +\infty) \ni \lambda \mapsto E_0(\lambda)$ is strictly decreasing.

SOLUTION TO PROBLEM 6 (CONTINUATION):