Mathematical Quantum Mechanics - Mid-term exam, 13.12.2012
 Mathematische Quantenmechanik - Zwischenklausur, 13.12.2012

Name:/Name:
Matriculation number:/Matrikelnr.: \qquad Semester:/Fachsemester:

Credits needed for:/Anrechnung der Credit Points für das: \square Hauptfach \square Nebenfach
Extra solution sheets submitted:/Zusätzlich abgegebene Lösungsblätter: \quad Yes \square No

problem	1	2	3	4	5	6	\sum
total marks	20	20	20	20	20	20	120
scored marks							

INSTRUCTIONS:

- This booklet is made of fourteen pages, including the cover, numbered from 1 to 14 . The test consists of six problems. Each problem is worth 20 marks. 100 marks are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-size "cheat sheet" (Spickzettel).
- Raise up your hand to request extra sheets or scratch paper. You are not allowed to use your own paper.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in English or in German. Put your name on every sheet you hand in.
- You have 100 minutes.

GOOD LUCK!

Name

PROBLEM 1. (20 marks)
Compute

$$
\int_{-\infty}^{+\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x
$$

SOLUTION:

SOLUTION TO PROBLEM 1 (CONTINUATION):

Name

PROBLEM 2. (20 marks)

Prove that for any $u \in \mathcal{D}^{\prime}(\mathbb{R})$ satisfying

$$
x u^{\prime}+u=0
$$

in the distribution sense, there exist constant $c_{1}, c_{2} \in \mathbb{C}$ such that

$$
u=c_{1} \delta_{0}+c_{2} \operatorname{PV}\left(\frac{1}{x}\right)
$$

(Notation: $\mathcal{D}^{\prime}(\mathbb{R})$ is the space of distributions on \mathbb{R}, δ_{0} is the delta distribution at zero, $\operatorname{PV}\left(\frac{1}{x}\right)$ is the principal value distribution.)

Hints: (1) You may use the fact that the solution to $T^{\prime}=0$ in $\mathcal{D}^{\prime}(\Omega)$ is the constant distribution. Use this to find the action of u on test functions of the form $x \phi, \phi \in \mathcal{D}(\mathbb{R})$.
(2) You may also use the following straightforward consequence of Taylor's formula, precisely as we did in homework Exercise 9 (ii): if $\phi \in C_{0}^{\infty}(\mathbb{R})$ and $\chi_{\phi} \in C_{0}^{\infty}(\mathbb{R},[0,1])$ is such that $\chi_{\phi} \equiv 1$ on the support of ϕ, then $\exists \psi \in C^{\infty}(\mathbb{R})$ such that

$$
\phi(x)=\phi(x) \chi_{\phi}(x)=(\phi(0)+x \psi(x)) \chi_{\phi}(x) \quad \forall x \in \mathbb{R} .
$$

SOLUTION:

SOLUTION TO PROBLEM 2 (CONTINUATION):

PROBLEM 3. (20 marks)

Let $d \in \mathbb{N}$. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions in $H^{1}\left(\mathbb{R}^{d}\right)$ and let $f \in H^{1}\left(\mathbb{R}^{d}\right)$. Assume that

$$
f_{n} \rightharpoonup f \quad \text { as } n \rightarrow \infty \quad \text { weakly in } H^{1}\left(\mathbb{R}^{d}\right)
$$

Prove that

$$
f_{n} \rightharpoonup f \quad \text { as } n \rightarrow \infty \quad \text { weakly in } L^{2}\left(\mathbb{R}^{d}\right)
$$

SOLUTION:

SOLUTION TO PROBLEM 3 (CONTINUATION):

Name

PROBLEM 4. (20 marks)

Consider the complex Hilbert space $\mathcal{H}=L^{2}[-1,1]$ and the bounded linear operators

$$
\begin{array}{ll}
A: \mathcal{H} \rightarrow \mathcal{H}, & (A f)(x)=x f(x) \\
B: \mathcal{H} \rightarrow \mathcal{H}, & (B f)(x)=x^{2} f(x),
\end{array}
$$

for all $x \in[-1,1]$ and $f \in L^{2}[-1,1]$. Correspondingly, let \mathcal{A}_{A} and \mathcal{A}_{B} be the C^{*}-subalgebras of $\mathcal{B}(\mathcal{H})$ generated respectively by A and by B. (That is, \mathcal{A}_{A} consists of the closure in the operator norm of all polynomials of $A . A^{*}$ is not mentioned simply because $A^{*}=A$. The same for \mathcal{A}_{B}.)
(i) Consider the functions $\mathbf{1}$ and θ in \mathcal{H} defined by

$$
\mathbf{1}(x):=1 \quad \forall x \in[-1,1], \quad \theta(x):=\left\{\begin{array}{ll}
1 & \text { if } x \in[0,1] \\
0 & \text { if } x \in[-1,0)
\end{array} .\right.
$$

Prove that $\mathbf{1}$ is cyclic for \mathcal{A}_{A} while θ is not.
(ii) Prove that \mathcal{A}_{B} has no cyclic vectors.
(Hint: if f was cyclic, define $g(x):=\overline{f(-x)} \operatorname{sgn}(x)$.)

SOLUTION:

SOLUTION TO PROBLEM 4 (CONTINUATION):

PROBLEM 5. (20 marks)

Consider the three-dimensional Hamiltonian $H=-\Delta+V$ where $V \in L^{\infty}\left(\mathbb{R}^{3}\right)$. Assume that for some $E \in \mathbb{R}$ and some $\psi \in L^{2}\left(\mathbb{R}^{3}\right)$ one has

$$
-\Delta \psi+V \psi=E \psi
$$

as an identity of L^{2}-functions. Prove that $\psi \in L^{\infty}\left(\mathbb{R}^{3}\right)$.
(Hint: for such a ψ prove and use the inequality $\|\psi\|_{\infty} \leqslant a\left(\|\Delta \psi\|_{2}+\|\psi\|_{2}\right)$ for some $a>0$.)

SOLUTION:

SOLUTION TO PROBLEM 5 (CONTINUATION):

Name

PROBLEM 6. (20 marks)

Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a measurable function. For any $\lambda>0$ let $E_{0}(\lambda)$ denote the ground state energy of $-\Delta+\lambda V$. Assume that
(a) $V \in L^{3 / 2}\left(\mathbb{R}^{3}\right)$,
(b) $\lim _{|x| \rightarrow \infty} V(x)=0$,
(c) $E_{0}\left(\lambda_{0}\right)<0$ for some $\lambda_{0}>0$.
(d) $V(x)<0$ for almost every $x \in \mathbb{R}^{3}$.

Prove that under the assumptions (a), (b), (c), and (d), the function $\left[\lambda_{0},+\infty\right) \ni \lambda \mapsto E_{0}(\lambda)$ is strictly decreasing.

SOLUTION:

SOLUTION TO PROBLEM 6 (CONTINUATION):

