

MAXIMILIANS-UNIVERSITÄT MÜNCHEN MATHEMATISCHES INSTITUT

Winter term 2012-2013 / Wintersemester 2012-2013

Mathematical Quantum Mechanics – Final exam, 9.2.2013

Mathematische Quantenmechanik – Endklausur, 9.2.2013

Name:/Name:							
Matriculation number:/MatrikeInr.:		Semester: / Fachsemester:					
Degree course: / <i>Studiengang:</i>	□ Diplom □ TMP □	 Bachelo Master, 	r, PO PO	□ Leh □ Leh	ramt Gymnasi ramt Gymnasi	um (modularisiert) um (nicht modul.)	
Major:/Hauptfach: 🗅 Mathem	atik 🗅 Wir	rtschaftsm.	🗅 Informatik	🗅 Physik	🗅 Statistik	ū	
Minor:/Nebenfach: D Mathema	atik 🗅 Wir	tschaftsm.	🗅 Informatik	🗅 Physik	🗅 Statistik	•	
Credits needed for:/Anrechnu	ng der Credi	it Points für	das: 🗅 Haupt	fach 🗅 No	ebenfach		
Extra solution sheets submitt	t ed: /Zusätzl	lich abgegeb	ene Lösungsblä	tter: 🗖 Ye	s 🖵 No		

problem	1	2	3	4	5	6	7	8	9	\sum
total marks	16	16	16	16	16	16	16	16	16	144
scored marks										

homework	mid-term	final test	total	FINAL
bonus	performance	performance	performance	MARK

INSTRUCTIONS:

- This booklet is made of twenty-two pages, including the cover, numbered from 1 to 22. The test consists of nine problems. Each problem is worth 16 marks. 100 marks are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-size "cheat sheet" (Spickzettel).
- Raise up your hand to request extra sheets or scratch paper. You are not allowed to use your own paper.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in German or in English. Put your name on every sheet you hand in.
- You have 140 minutes.

GOOD LUCK!

Fill in the form here below only if you need the certificate (Schein).

	Diese nach nach	r Leistungsr § Abs § Abs	achweis entsp . Nr. . Nr.	richt auch den An Buchstabe Buchstabe	forderungen LPO I LPO I
UNIVERSITÄT MÜNCHEN		5			
ZEUGNIS					
Der / Die Studierende der					
Herr / Frau in	hat im WiSo		Halbiahr	2012 2012	
meine Übungen zur Mathematisches Quant	enmekanik		1101050111	_2012-2013_	
					_ besucht.
Er / Sie hat					
schriftliche Arbeiten geliefert, die mit ihm / ihr	besprochen wurde	en			

MÜNCHEN, den <u>9 Februar 2013</u>

PROBLEM 1. (16 marks)

Let \mathbb{S}^1 denote the unit circle in the complex plane, consider it homeomorphic to $[0, 2\pi)$ with periodicity. Let $h \in L^2(\mathbb{S}^1)$ be such that $h(x) = \overline{h(-x)}$ for a.e. $x \in \mathbb{S}^1$. Consider the map

 $T:L^2(\mathbb{S}^1)\to L^2(\mathbb{S}^1)\,,\qquad Tf:=h*f$

(the convolution with the function h).

- (i) Prove that T is an everywhere defined bounded linear operator.
- (ii) Prove that T is a compact and self-adjoint operator.
- (iii) Find an explicit orthonormal system $\{e_n\}_{n\in\mathbb{Z}}$ of $L^2(\mathbb{S}^1)$ and a collection $\{\lambda_n\}_{n\in\mathbb{Z}}$ in \mathbb{R} such that

$$T = \sum_{n \in \mathbb{Z}} \lambda_n |e_n\rangle \langle e_n|$$

where the series is meant to converge in operator norm.

(*Hint:* you may find it useful to use the fact that the Fourier transform turns convolution into multiplication.)

SOLUTION TO PROBLEM 1 (CONTINUATION):

Name

PROBLEM 2. (16 marks)

Consider the measure μ on $\mathbb R$ defined by

$$\mu := \mu_{\text{Lebesgue}} + \delta_4 + \delta_{-4}$$

(where δ_a denotes the Dirac measure centred at a) and the function $\phi : \mathbb{R} \to \mathbb{R}$ defined by

$$\phi(x) := \begin{cases} x^2, & x \ge 0\\ 3, & x < 0 \end{cases}.$$

Correspondingly, consider the operator $M_{\phi}: L^2(\mathbb{R}, d\mu) \to L^2(\mathbb{R}, d\mu)$ defined by

$$M_{\phi}f := \phi f, \qquad \mathcal{D}(M_{\phi}) := \{ f \in L^2(\mathbb{R}, \mathrm{d}\mu) \, | \, \phi f \in L^2(\mathbb{R}, \mathrm{d}\mu) \}$$

(i.e., the self-adjoint operator of multiplication by ϕ).

- (i) Find the spectrum of M_{ϕ} .
- (ii) Find the eigenvalues of M_{ϕ} .

SOLUTION TO PROBLEM 2 (CONTINUATION):

PROBLEM 3. (16 marks)

Let \mathcal{H} be a Hilbert space and let A be a (possibly unbounded) self-adjoint operator acting on \mathcal{H} . Define

$$U := (A - i)(A + i)^{-1}$$
.

- (i) Prove that U is a unitary operator on \mathcal{H} .
- (ii) Prove that $\ker(U-\mathbb{1}) = \{\mathbf{0}\}.$

SOLUTION TO PROBLEM 3 (CONTINUATION):

PROBLEM 4. (16 marks)

Let \mathcal{H} be a Hilbert space and let A be a (possibly unbounded) self-adjoint operator acting on \mathcal{H} . Denote by $\{E_{\Omega}^{(A)}\}_{\Omega}$ the projection-valued measure associated with A and by $\sigma(A)$ the spectrum of A. Prove the following:

$$\sigma(A) = \left\{ \lambda \in \mathbb{R} \mid E_{(\lambda - \varepsilon, \lambda + \varepsilon)}^{(A)} \neq \mathbb{O} \ \forall \varepsilon > 0 \right\}.$$

SOLUTION TO PROBLEM 4 (CONTINUATION):

PROBLEM 5. (16 marks)

For every $x \in [0,1]$ and $n \in \mathbb{N}$ define $f_n(x) := n^{-1/4} x^{\frac{3n+1}{2n}}$. Consider the sequence $\{f_n\}_{n=1}^{\infty}$.

- (i) Prove that $f_n \rightarrow 0$ weakly in $H^1(0,1)$ as $n \rightarrow \infty$.
- (ii) Does the sequence $\{f_n\}_{n=1}^{\infty}$ converge weakly to 0 in $H^2(0,1)$? Justify your answer.

SOLUTION TO PROBLEM 5 (CONTINUATION):

PROBLEM 6. (16 marks)

Let A and B be two bounded self-adjoint operators on a Hilbert space \mathcal{H} such that

$$\mathbb{O} \leqslant A \leqslant B.$$

Prove that

$$\mathbb{O} \leqslant A^{1/3} \leqslant B^{1/3} \,.$$

(*Hint:* consider $\int_0^{+\infty} \frac{1}{\lambda^{2/3}} \frac{1}{x+\lambda} d\lambda$ for x > 0.)

SOLUTION TO PROBLEM 6 (CONTINUATION):

PROBLEM 7. (16 marks)

Let \mathcal{H} be a separable Hilbert space and let T be a bounded linear operator acting on \mathcal{H} .

- (i) Assume that $T = T_1T_2$ for some Hilbert-Schmidt operators T_1 and T_2 acting on \mathcal{H} . Prove that T is of trace class.
- (ii) Assume that T is of trace class. Prove that there exist two Hilbert-Schmidt operators T_1 and T_2 acting on \mathcal{H} such that $T = T_1 T_2$.

SOLUTION TO PROBLEM 7 (CONTINUATION):

PROBLEM 8. (16 marks)

Consider the Hamiltonian $H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x)$ acting on $L^2(\mathbb{R})$, where

- V is real-valued,
- $V \in L^{\infty}(\mathbb{R}),$
- and $\lim_{x \to \pm \infty} V(x) = 0.$

For any given E > 0 construct a sequence $\{\psi_n\}_{n=1}^{\infty}$ in $C_0^{\infty}(\mathbb{R})$ such that

- $\|\psi_n\|_2 = 1 \quad \forall n \in \mathbb{N}$
- and $\lim_{n \to \infty} ||(H E)\psi_n||_2 = 0$.

SOLUTION TO PROBLEM 8 (CONTINUATION):

PROBLEM 9. (16 marks)

Consider the Hamiltonian $H = -\Delta - V$ acting on $L^2(\mathbb{R}^3)$, where

$$V(\mathbf{x}) = Z |\mathbf{x}|^{-1} e^{-|\mathbf{x}|}, \qquad \mathbf{x} \neq 0,$$

and Z is a positive parameter. (You may think of H as the Hamiltonian of an hydrogenic atom where the Coulomb interaction is exponentially suppressed at large distances.)

- (i) Prove that there exists a universal constant $Z_0 > 0$ such that if $Z < Z_0$ then the ground state energy E_0 of H is non negative.
- (ii) Prove that there exists a universal constant $C_0 > 0$ such that the ground state energy $E_0^f(N)$ of a system of N non-interacting spinless fermions, each subject to the same potential V, is bounded below by $E_0^f(N) \ge -C_0 Z^{5/2}$ uniformly in N.

SOLUTION TO PROBLEM 9 (CONTINUATION):