

Winter term 2012-2013 / Wintersemester 2012-2013

Mathematical Quantum Mechanics - Final exam, 9.2.2013
 Mathematische Quantenmechanik - Endklausur, 9.2.2013

Name:/Name
Matriculation number:/Matrikelnr.: \qquad Semester:/Fachsemester: \qquad

Credits needed for:/Anrechnung der Credit Points für das: Hauptfach \square Nebenfach
Extra solution sheets submitted:/Zusätzlich abgegebene Lösungsblätter: \quad Yes \square No

problem	1	2	3	4	5	6	7	8	9	\sum
total marks	16	16	16	16	16	16	16	16	16	144
scored marks										

| homework
 bonus | mid-term
 performance | final test
 performance | total
 performance | FINAL
 MARK |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |

INSTRUCTIONS:

- This booklet is made of twenty-two pages, including the cover, numbered from 1 to 22 . The test consists of nine problems. Each problem is worth 16 marks. 100 marks are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-size "cheat sheet" (Spickzettel).
- Raise up your hand to request extra sheets or scratch paper. You are not allowed to use your own paper.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in German or in English. Put your name on every sheet you hand in.
- You have 140 minutes.

GOOD LUCK!

Fill in the form here below only if you need the certificate (Schein).

UNIVERSITÄT MÜNCHEN

Dieser Leistungsnachweis entspricht auch den Anforderungen				
nach \S	Abs.	Nr.	Buchstabe	LPO I
nach \S	Abs.	Nr.	Buchstabe	LPO I

ZEUGNIS

Der / Die Studierende der \qquad
Herr / Frau \qquad geboren am in hat im WiSe -Halbjahr 2012-2013 meine Übungen zur Mathematisches Quantenmekanik
mit
Er / Sie hat
schriftliche Arbeiten geliefert, die mit ihm / ihr besprochen wurden.

PROBLEM 1. (16 marks)

Let \mathbb{S}^{1} denote the unit circle in the complex plane, consider it homeomorphic to $[0,2 \pi)$ with periodicity. Let $h \in L^{2}\left(\mathbb{S}^{1}\right)$ be such that $h(x)=\overline{h(-x)}$ for a.e. $x \in \mathbb{S}^{1}$. Consider the map

$$
T: L^{2}\left(\mathbb{S}^{1}\right) \rightarrow L^{2}\left(\mathbb{S}^{1}\right), \quad T f:=h * f
$$

(the convolution with the function h).
(i) Prove that T is an everywhere defined bounded linear operator.
(ii) Prove that T is a compact and self-adjoint operator.
(iii) Find an explicit orthonormal system $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ of $L^{2}\left(\mathbb{S}^{1}\right)$ and a collection $\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$ in \mathbb{R} such that

$$
T=\sum_{n \in \mathbb{Z}} \lambda_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|
$$

where the series is meant to converge in operator norm.
(Hint: you may find it useful to use the fact that the Fourier transform turns convolution into multiplication.)

SOLUTION:

SOLUTION TO PROBLEM 1 (CONTINUATION):

Name

PROBLEM 2. (16 marks)

Consider the measure μ on \mathbb{R} defined by

$$
\mu:=\mu_{\text {Lebesgue }}+\delta_{4}+\delta_{-4}
$$

(where δ_{a} denotes the Dirac measure centred at a) and the function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\phi(x):=\left\{\begin{array}{ll}
x^{2}, & x \geqslant 0 \\
3, & x<0
\end{array} .\right.
$$

Correspondingly, consider the operator $M_{\phi}: L^{2}(\mathbb{R}, \mathrm{~d} \mu) \rightarrow L^{2}(\mathbb{R}, \mathrm{~d} \mu)$ defined by

$$
M_{\phi} f:=\phi f, \quad \mathcal{D}\left(M_{\phi}\right):=\left\{f \in L^{2}(\mathbb{R}, \mathrm{~d} \mu) \mid \phi f \in L^{2}(\mathbb{R}, \mathrm{~d} \mu)\right\}
$$

(i.e., the self-adjoint operator of multiplication by ϕ).
(i) Find the spectrum of M_{ϕ}.
(ii) Find the eigenvalues of M_{ϕ}.

SOLUTION:

SOLUTION TO PROBLEM 2 (CONTINUATION):

PROBLEM 3. (16 marks)

Let \mathcal{H} be a Hilbert space and let A be a (possibly unbounded) self-adjoint operator acting on \mathcal{H}. Define

$$
U:=(A-\mathrm{i})(A+\mathrm{i})^{-1} .
$$

(i) Prove that U is a unitary operator on \mathcal{H}.
(ii) Prove that $\operatorname{ker}(U-\mathbb{1})=\{\mathbf{0}\}$.

SOLUTION:

SOLUTION TO PROBLEM 3 (CONTINUATION):

Name

PROBLEM 4. (16 marks)

Let \mathcal{H} be a Hilbert space and let A be a (possibly unbounded) self-adjoint operator acting on \mathcal{H}. Denote by $\left\{E_{\Omega}^{(A)}\right\}_{\Omega}$ the projection-valued measure associated with A and by $\sigma(A)$ the spectrum of A. Prove the following:

$$
\sigma(A)=\left\{\lambda \in \mathbb{R} \mid E_{(\lambda-\varepsilon, \lambda+\varepsilon)}^{(A)} \neq \mathbb{O} \quad \forall \varepsilon>0\right\} .
$$

SOLUTION:

SOLUTION TO PROBLEM 4 (CONTINUATION):

Name

PROBLEM 5. (16 marks)

For every $x \in[0,1]$ and $n \in \mathbb{N}$ define $f_{n}(x):=n^{-1 / 4} x^{\frac{3 n+1}{2 n}}$. Consider the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$.
(i) Prove that $f_{n} \rightharpoonup 0$ weakly in $H^{1}(0,1)$ as $n \rightarrow \infty$.
(ii) Does the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converge weakly to 0 in $H^{2}(0,1)$? Justify your answer.

SOLUTION:

SOLUTION TO PROBLEM 5 (CONTINUATION):

PROBLEM 6. (16 marks)

Let A and B be two bounded self-adjoint operators on a Hilbert space \mathcal{H} such that

$$
\mathbb{O} \leqslant A \leqslant B .
$$

Prove that

$$
\mathbb{O} \leqslant A^{1 / 3} \leqslant B^{1 / 3} .
$$

(Hint: consider $\int_{0}^{+\infty} \frac{1}{\lambda^{2 / 3}} \frac{1}{x+\lambda} \mathrm{d} \lambda$ for $x>0$.)

SOLUTION:

SOLUTION TO PROBLEM 6 (CONTINUATION):

PROBLEM 7. (16 marks)

Let \mathcal{H} be a separable Hilbert space and let T be a bounded linear operator acting on \mathcal{H}.
(i) Assume that $T=T_{1} T_{2}$ for some Hilbert-Schmidt operators T_{1} and T_{2} acting on \mathcal{H}. Prove that T is of trace class.
(ii) Assume that T is of trace class. Prove that there exist two Hilbert-Schmidt operators T_{1} and T_{2} acting on \mathcal{H} such that $T=T_{1} T_{2}$.

SOLUTION:

SOLUTION TO PROBLEM 7 (CONTINUATION):

Name

PROBLEM 8. (16 marks)

Consider the Hamiltonian $H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V(x)$ acting on $L^{2}(\mathbb{R})$, where

- V is real-valued,
- $V \in L^{\infty}(\mathbb{R})$,
- and $\lim _{x \rightarrow \pm \infty} V(x)=0$.

For any given $E>0$ construct a sequence $\left\{\psi_{n}\right\}_{n=1}^{\infty}$ in $C_{0}^{\infty}(\mathbb{R})$ such that

- $\left\|\psi_{n}\right\|_{2}=1 \quad \forall n \in \mathbb{N}$
- and $\lim _{n \rightarrow \infty}\left\|(H-E) \psi_{n}\right\|_{2}=0$.

SOLUTION:

SOLUTION TO PROBLEM 8 (CONTINUATION):

PROBLEM 9. (16 marks)

Consider the Hamiltonian $H=-\Delta-V$ acting on $L^{2}\left(\mathbb{R}^{3}\right)$, where

$$
V(\mathbf{x})=Z|\mathbf{x}|^{-1} e^{-|\mathbf{x}|}, \quad \mathbf{x} \neq 0
$$

and Z is a positive parameter. (You may think of H as the Hamiltonian of an hydrogenic atom where the Coulomb interaction is exponentially suppressed at large distances.)
(i) Prove that there exists a universal constant $Z_{0}>0$ such that if $Z<Z_{0}$ then the ground state energy E_{0} of H is non negative.
(ii) Prove that there exists a universal constant $C_{0}>0$ such that the ground state energy $E_{0}^{f}(N)$ of a system of N non-interacting spinless fermions, each subject to the same potential V, is bounded below by $E_{0}^{f}(N) \geqslant-C_{0} Z^{5 / 2}$ uniformly in N.

SOLUTION:

SOLUTION TO PROBLEM 9 (CONTINUATION):

