TMP Programme Munich – winter term 2012/2013

PROBLEMS IN CLASS - Supplementary problems on self-adjoint operators and spectral theorem. Info: www.math.lmu.de/~michel/WS12_MQM.html

Problem 14. (Momentum operator on $[0, 2\pi]$.)

Consider the operators A_0 and A on the Hilbert space $L^2[0, 2\pi]$ given by

$$A_0 f = -if', \qquad \mathcal{D}(A_0) = \{ f \in C^1([0, 2\pi]) \mid f(0) = f(2\pi) = 0 \}, Af = -if', \qquad \mathcal{D}(A) = \{ f \in C^1([0, 2\pi]) \mid f(0) = f(2\pi) \}.$$

- (i) Show that both A_0 and A are symmetric and that $A_0 \subset A$.
- (ii) Find A_0^* .
- (iii) Find A^* and show that A is essentially self-adjoint.
- (iv) Show that A_0 has no eigenvalues.
- (v) Show that A admits an orthonormal basis of eigenvectors.

Problem 15. (Properties of the adjoint of a densely defined operator.)

Let A and B be two densely defined operators on a Hilbert space \mathcal{H} . Show the following.

- (i) $(\alpha A)^* = \overline{\alpha} A^* \ \forall \alpha \in \mathbb{C}.$
- (ii) If $\mathcal{D}(A) \cap \mathcal{D}(B)$ and $\mathcal{D}(A^*) \cap \mathcal{D}(B^*)$ are dense in \mathcal{H} , then $\mathcal{D}(A+B) = \mathcal{D}(A) \cap \mathcal{D}(B)$, $\mathcal{D}(A^*+B^*) = \mathcal{D}(A^*) \cap \mathcal{D}(B^*)$, and $(A+B)^* \supset A^*+B^*$.
- (iii) If $\mathcal{D}(AB)$ is dense, then $(AB)^* \supset B^*A^*$.
- (iv) If $A \subset B$ then $A^* \supset B^*$.
- (v) If A is self-adjoint, A has no symmetric extension.
- (vi) Ker $A^* = (\operatorname{Ran} A)^{\perp}$. (Compare with the bounded case: Problem 13 (i).)

Problem 16. Let A be a densely defined operator on a Hilbert space \mathcal{H} . Show the following.

- (i) If A is injective and Ran A is dense in \mathcal{H} then $(A^{-1})^* = (A^*)^{-1}$.
- (ii) If A is self-adjoint and injective, then A^{-1} is self-adjoint too.

Problem 17. Let \mathcal{H} be a Hilbert space and let A, B be bounded self-adjoint operators on \mathcal{H} .

- (i) Assume that $A \leq B$. Show that $C^*AC \leq C^*BC$ for all $C \in \mathcal{B}(\mathcal{H})$.
- (ii) Assume that $\mathbb{O} \leq A \leq B$. Show that $||A|| \leq ||B||$.
- (iii) Assume that $A \ge \mathbb{O}$. Show that A is invertible if and only if $A \ge c1$ for some c > 0.
- (iv) Assume that $\mathbb{O} \leq A \leq B$. Show that for every $\lambda > 0$ $A + \lambda \mathbb{1}$ and $B + \lambda \mathbb{1}$ are positive and invertible and $(B + \lambda \mathbb{1})^{-1} \leq (A + \lambda \mathbb{1})^{-1}$
- (v) Assume that $\mathbb{O} \leq A \leq B$ and that A is invertible. Show that B is invertible too and $B^{-1} \leq A^{-1}$. (*Hint:* (iii) and (iv) above.)

Problem 18. (Absolute value, positive, negative part of a self-adjoint operator: with and without the functional calculus.)

Let \mathcal{H} be a Hilbert space and let $A = A^* \in \mathcal{B}(\mathcal{H})$.

- (i) Explain why the operator $|A| = \sqrt{A^*A}$ constructed with Hilbert space techniques (see, e.g., Reed Simon, Theorem VI.9) and the operator |A| constructed by means of the continuous functional calculus are actually the same.
- (ii) Show that the limit, in operator norm, of a sequence of positive operators on \mathcal{H} is positive.
- (iii) Show that $A_n := 2(\frac{4}{n}\mathbb{1} + (|A| A)^2)^{-1}(|A| A)^2|A|$ is bounded and positive in $\mathcal{B}(\mathcal{H})$ for every $n \in \mathbb{N}$. (*Hint:* the operators A, |A|, $(\frac{4}{n}\mathbb{1} + (|A| - A)^2)^{-1}$ commute and the latter is positive. No functional calculus argument is needed here, although it would help.)
- (iv) Show that $A_n \xrightarrow[n \to \infty]{\|\|} |A| A$ and deduce by (ii) that $A \leq |A|$.
- (v) Re-prove that $A \leq |A|$ using the continuous functional calculus.
- (vi) Show that there is a unique pair of positive operators A_+ , A_- in $\mathcal{B}(\mathcal{H})$ such that $A_+A_- = \mathbb{O}$ and $A = A_+ A_-$. (*Hint:* both to prove that $A_+ \ge 0$, $A_- \ge 0$, and to prove uniqueness, you need $A \le |A|$.)

Problem 19. (Operator monotone functions.)

A continuous, real-valued function f on an interval I is said OPERATOR MONOTONE (on the interval I) if $A \leq B \Rightarrow f(A) \leq f(B)$ for every bounded, self-adjoint operators A, B on a Hilbert space \mathcal{H} such that $\sigma(A) \subset I, \sigma(B) \subset I$.

- (i) Show that the function $f_{\alpha}(t) = \frac{t}{(1 + \alpha t)}$ is operator monotone on \mathbb{R}^+ if $\alpha \ge 0$.
- (ii) Show that the function $f_{\alpha}(t)$ considered in (i) is operator monotone on [0, 1] if $\alpha \in (-1, 0]$.
- (iii) Let A, B be bounded self-adjoint operators on a Hilbert space \mathcal{H} such that $\mathbb{O} \leq A \leq B$. Show that $\mathbb{O} \leq \sqrt{A} \leq \sqrt{B}$, in other words, $x \mapsto \sqrt{x}$ is operator monotone on \mathbb{R}^+ .

(*Hint:* Problem 17 (iv) and the identity $\sqrt{x} = \frac{1}{\pi} \int_0^{+\infty} \frac{d\lambda}{\sqrt{\lambda}} \left(1 - \frac{\lambda}{\lambda + x}\right)$, valid $\forall x \ge 0$.)

- (iv) Same assumption as in (iii). Show that $\mathbb{O} \leq A^{\alpha} \leq B^{\alpha} \ \forall \alpha \in [0,1]$. (*Hint:* same strategy as in (iii), use now $x^{\alpha} = \frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} \frac{d\lambda}{\lambda^{1-\alpha}} \frac{x}{\lambda+x}$ valid $\forall x \ge 0, \forall \alpha \in (0,1)$.)
- (v) Produce a counterexample to the conclusion in (iv) when $\alpha > 1$.

Problem 20. (Spectral resolution of the position operator.)

Consider the position operator on $L^2[0,1]$, i.e., the map $A : L^2[0,1] \to L^2[0,1]$, $(A\psi)(x) = x\psi(x)$ a.e. in [0,1]. (Recall from homework that $A = A^*$, ||A|| = 1, $\sigma(A) = [0,1]$.)

- (i) Give the explicit action of the operator f(A) on $L^2[0,1]$ where $f:[0,1] \to \mathbb{C}$ is a given bounded, Borel-measurable function. Use the measurable functional calculus to answer this question (see (iii) below, instead).
- (ii) Exhibit the projection-valued measure $\{E_{\Omega}\}_{\Omega}$ associated with A, that is, give the explicit action of E_{Ω} on $L^2[0,1]$ for each Borel set $\Omega \subset \sigma(A)$.
- (iii) Conversely, given the projection-valued measure $\{E_{\Omega}\}_{\Omega}$ associated with A determined in (ii), construct f(A) (i.e., give its explicit action) using the spectral resolution for A.

Problem 21. (The restriction to a spectral subspace.)

Let \mathcal{H} be a Hilbert space, A be a self-adjoint operator in $\mathcal{B}(\mathcal{H})$ and $\{E_{\Omega}\}_{\Omega}$ be the projectionvalued measure associated with A.

- (i) Show that the subspace ran E_{Ω} is invariant under A for any Borel set $\Omega \subset \sigma(A)$.
- (ii) Show that if Ω is a closed Borel set in $\sigma(A)$ then $\sigma(A|_{\operatorname{ran} E_{\Omega}}) \subset \Omega$.

(*Hint:* spectral theorem, multiplication operator form.)

Problem 22. (More applications of spectral theorem: unitary group; norm of the resolvent.) Let \mathcal{H} be a Hilbert space and A be a self-adjoint operator in $\mathcal{B}(\mathcal{H})$.

(i) Show that the operator $U(t) = e^{itA}$ constructed with the functional calculus for A is a unitary operator for all $t \in \mathbb{R}$ and that

$$U(t)^* = U(-t), \qquad U(t)U(s) = U(t+s) \qquad \forall t, s \in \mathbb{R}.$$

- (ii) Prove that the operator-valued function $t \mapsto U(t)$ defined in (i) is differentiable with respect to the operator norm topology and $U'(t) = iAU(t) = iU(t)A \ \forall t \in \mathbb{R}$.
- (iii) Let $\lambda \notin \sigma(A)$. Show that $\|(\lambda A)^{-1}\| = \frac{1}{d(\lambda, \sigma(A))}$.

Problem 23. Let A be the integral operator on $L^2[0, 1]$ defined by $(Af)(x) = \int_0^1 \min(x, y) f(y) dy$ for a.e. $x \in [0, 1]$.

- (i) Prove that A is bounded and self-adjoint.
- (ii) Reduce A to the form of a multiplication by a function, that is, produce a measure space (\mathcal{M}, μ) , an isomorphism $U : L^2[0, 1] \to L^2(\mathcal{M}, d\mu)$, and a bounded measurable function $F: \mathcal{M} \to \mathbb{R}$ such that UAU^* acts on $L^2(\mathcal{M}, d\mu)$ as the operator of multiplication by F.

Problem 24. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of densely defined self-adjoint operators on a Hilbert space \mathcal{H} and let A be another self-adjoint operator on \mathcal{H} . Assume that

$$\lim_{n \to \infty} \left\| e^{itA_n} \varphi - e^{itA} \varphi \right\| = 0 \qquad \forall \varphi \in \mathcal{H}, \qquad \forall t \in \mathbb{R}.$$

Show that

$$\lim_{n \to \infty} \left\| R_z(A_n)\varphi - R_z(A)\varphi \right\| = 0 \qquad \forall \varphi \in \mathcal{H}$$

where $R_z(A_n) = (z\mathbb{1} - A_n)^{-1}$, $R_z(A) = (z\mathbb{1} - A)^{-1}$ for an arbitrary $z \in \mathbb{C} \setminus \mathbb{R}$. (*Hint:* represent the resolvent $R_z(A)$ with an integral involving e^{itA} , then use the spectral theorem.)

Problem 25.

- (i) Let $\{E_{\Omega}\}_{\Omega \in \Sigma_{B}(\mathbb{R})}$ be a projection-valued measure on a Hilbert space $(\Sigma_{B}(\mathbb{R})$ is the Borel σ -algebra on \mathbb{R}). Show that the three properties that define $\{E_{\Omega}\}_{\Omega \in \Sigma_{B}(\mathbb{R})}$, i.e.,
 - 1. each E_{Ω} is an orthogonal projection on \mathcal{H} ,
 - 2. $E_{\emptyset} = \mathbb{O}, E_{\mathbb{R}} = \mathbb{1},$
 - 3. $E_{\bigcup_{n=1}^{\infty}\Omega_n} = \sum_{n=1}^{\infty} E_{\Omega_n}$ strongly, for pairwise disjoint $A_1, A_2, \dots \in \Sigma_B(\mathbb{R})$,

imply

4.
$$E_{\Omega_1}E_{\Omega_2} = E_{\Omega_2}E_{\Omega_1} = E_{\Omega_1 \cap \Omega_2} \ \forall \Omega_1, \Omega_2 \in \Sigma_B(\mathbb{R}).$$

Problem 26. Consider the following statement for an operator $A = A^* \in \mathcal{B}(\mathcal{H})$, where \mathcal{H} is a Hilbert space: $\mathbb{O} \leq A \leq \mathbb{1}$ if and only if $A^2 \leq A$.

- (i) Prove the statement without the spectral theorem (only with Hilbert space techniques).
- (ii) Prove the statement using the spectral theorem.

Problem 27. (Riesz projection.)

Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H} and Λ be a non-empty compact subset of $\sigma(A)$. Consider in the complex plane a closed, piecewise smooth, positively oriented curve Γ such that the intersection between $\sigma(A)$ and the region enclosed by Γ is Λ , and also $\Gamma \cap \sigma(A) = \emptyset$. (Hence Λ is separated by a gap from the rest of the spectrum of A.) Show that

$$\chi_{\Lambda}(A) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{1}{z-A} dz$$

where χ_{Λ} is the characteristic function of Λ .

Problem 28. (Stone's theorem.)

Preliminary remark: if A is a densely defined self-adjoint operator on a Hilbert space \mathcal{H} and $\forall t \in \mathbb{R}$ one defines $U(t) := e^{itA}$ with the functional calculus, then $\{U(t)\}_{t\in\mathbb{R}}$ is a unitary group. The proof is the same for bounded or unbounded A, see Problem 19 (i). If A is bounded, such a group is differentiable in the *norm* operator topology, with U'(t) = iAU(t) (Problem 19 (ii)), whereas if A is unbounded the same proof gives that $\{U(t)\}_{t\in\mathbb{R}}$ is a *strongly* continuous group and U'(t) = iAU(t) holds in the *strong* operator topology.

Assume now that $\{U(t)\}_{t\in\mathbb{R}}$ is a strongly continuous unitary group on a Hilbert space \mathcal{H} , i.e., each U(t) is unitary, $U(t+s) = U(t)U(s) \ \forall t, s \in \mathbb{R}$, and $\forall \psi \in \mathcal{H} \ U(t)\psi \to U(t_0)\psi$ if $t \to t_0$.

- (i) Let $\mathcal{D} \subset \mathcal{H}$ be the subspace of all finite linear combinations of vectors $\varphi_f \in \mathcal{H}$ of the form $\varphi_f = \int_{-\infty}^{+\infty} f(t)U(t)\varphi \, dt$ for some $\varphi \in \mathcal{H}$ and some $f \in C_0^{\infty}(\mathbb{R})$, where the integral can be taken to be a Riemann integral since U(t) is strongly continuous. Show that \mathcal{D} is dense in \mathcal{H} .
- (ii) For $\varphi_f \in \mathcal{D}$ define $A\varphi_f := -i \varphi_{-f'}$. Show that A is symmetric. (*Hint:* compute $\lim_{s\to 0} \frac{U(s)-\mathbb{I}}{s}$ on each φ_f .)
- (iii) Show that both A and U(t) leave \mathcal{D} invariant and commute on \mathcal{D} .
- (iv) Show that A is essentially self-adjoint.

(*Hint*: if u is a solution to $A^*u = \pm iu$, consider the function $t \mapsto \langle U(t)\varphi, u \rangle \ \forall \varphi \in \mathcal{D}$.)

(v) Show that $U(t) = e^{it\overline{A}}$. (*Hint:* set $w(t) := U(t)\varphi - V(t)\varphi, \varphi \in \mathcal{D}$, where $V(t) := e^{it\overline{A}}$. Compute $\frac{d}{dt} ||w(t)||^2$.)

Problem 29. Let A be a densely defined (possibly unbounded), self-adjoint operator in a Hilbert space \mathcal{H} . Denote by $\{E_{\Omega}\}_{\Omega}$ the projection-valued measure associated with A. Let ψ_1, \ldots, ψ_N be N linearly independent vectors in the domain of A and let $\mu \in \mathbb{R}$ be such that

$$\langle \psi, A\psi \rangle < \mu \|\psi\|^2$$

for any non-zero element $\psi \in \text{span}\{\psi_1, \ldots, \psi_N\}$.

Show that dim $\mathbb{R}(E_{(-\infty,\mu]}) \ge N$. (R(T) denotes the range of an operator T.)