TMP Programme Munich – winter term 2012/2013

PROBLEMS IN CLASS - Tutorials of 18 and 19 December 2012 Info: www.math.lmu.de/~michel/WS12_MQM.html

Problem 11. Recall that an orthogonal projection acting on a Hilbert space \mathcal{H} is an operator $P \in \mathcal{B}(\mathcal{H})$ such that $P = P^* = P^2$. Recall also that in the Hilbert space case the symbol \oplus denotes the orthogonal sum (see the Projection Theorem).

- (i) Show that the kernel and the range of an orthogonal projection P are two closed subspaces that decompose \mathcal{H} in the orthogonal decomposition $\mathcal{H} = \text{Ker}P \oplus \text{Ran}P$.
- (ii) Conversely, show that if K, R are two closed subspaces of \mathcal{H} such that $\mathcal{H} = K \oplus R$ then there exists $P \in \mathcal{B}(\mathcal{H})$ such that P is the orthogonal projection onto R.

Assume in the following that P is an orthogonal projection on \mathcal{H} other than the identity.

- (iii) Find the point spectrum $\sigma_{\rm p}(P)$.
- (iv) Find spectrum $\sigma(P)$.
- (v) For every $\lambda \notin \sigma(P)$ give the explicit action of the resolvent operator $(\lambda \mathbb{1} P)^{-1}$.

Problem 12. Consider the measurable functions f_0 and g_0 such that $f_0(x) = e^{-x^2}$, $g_0(x) = \frac{e^{-|x|}}{|x|^{1/4}}$ and the linear map $f \mapsto Tf$ such that $(Tf)(x) = \left(\int_{\mathbb{R}} g_0(y) f(y) \, \mathrm{d}y\right) f_0(x)$ for a.e. $x \in \mathbb{R}$.

- (i) Show that T is a bounded linear operator on $L^2(\mathbb{R})$.
- (ii) Compute ||T||.
- (iii) Find the adjoint operator T^* of T.

Problem 13. Let \mathcal{H} be a Hilbert space.

- (i) Show that Ker $T^* = (\operatorname{Ran} T)^{\perp}$ for every $T \in \mathcal{B}(\mathcal{H})$.
- (ii) Show that $\mathcal{H} = \overline{\operatorname{Ran} T} \oplus \operatorname{Ker} T^*$ for every $T \in \mathcal{B}(\mathcal{H})$.
- (iii) Show that if $N \in \mathcal{B}(\mathcal{H})$ is normal then Ker $N = \text{Ker } N^* = (\text{Ran } N)^{\perp} = (\text{Ran } N^*)^{\perp}$. (A normal operator N is an operator such that $NN^* = N^*N$, i.e., N commutes with its adjoint. Self-adjoint operators, as well as unitary operators, are normal.)