Mathematical Quantum Mechanics

TMP Programme Munich - winter term 2012/2013

PROBLEMS IN CLASS - Tutorials of 18 and 19 December 2012
Info: www.math.lmu.de/~michel/WS12_MQM.html

Problem 11. Recall that an orthogonal projection acting on a Hilbert space \mathcal{H} is an operator $P \in \mathcal{B}(\mathcal{H})$ such that $P=P^{*}=P^{2}$. Recall also that in the Hilbert space case the symbol \oplus denotes the orthogonal sum (see the Projection Theorem).
(i) Show that the kernel and the range of an orthogonal projection P are two closed subspaces that decompose \mathcal{H} in the orthogonal decomposition $\mathcal{H}=\operatorname{Ker} P \oplus \operatorname{Ran} P$.
(ii) Conversely, show that if K, R are two closed subspaces of \mathcal{H} such that $\mathcal{H}=K \oplus R$ then there exists $P \in \mathcal{B}(\mathcal{H})$ such that P is the orthogonal projection onto R.

Assume in the following that P is an orthogonal projection on \mathcal{H} other than the identity.
(iii) Find the point spectrum $\sigma_{\mathrm{p}}(P)$.
(iv) Find spectrum $\sigma(P)$.
(v) For every $\lambda \notin \sigma(P)$ give the explicit action of the resolvent operator $(\lambda \mathbb{1}-P)^{-1}$.

Problem 12. Consider the measurable functions f_{0} and g_{0} such that $f_{0}(x)=e^{-x^{2}}, g_{0}(x)=\frac{e^{-|x|}}{|x|^{1 / 4}}$ and the linear map $f \mapsto T f$ such that $(T f)(x)=\left(\int_{\mathbb{R}} g_{0}(y) f(y) \mathrm{d} y\right) f_{0}(x)$ for a.e. $x \in \mathbb{R}$.
(i) Show that T is a bounded linear operator on $L^{2}(\mathbb{R})$.
(ii) Compute $\|T\|$.
(iii) Find the adjoint operator T^{*} of T.

Problem 13. Let \mathcal{H} be a Hilbert space.
(i) Show that $\operatorname{Ker} T^{*}=(\operatorname{Ran} T)^{\perp}$ for every $T \in \mathcal{B}(\mathcal{H})$.
(ii) Show that $\mathcal{H}=\overline{\operatorname{Ran} T} \oplus \operatorname{Ker} T^{*}$ for every $T \in \mathcal{B}(\mathcal{H})$.
(iii) Show that if $N \in \mathcal{B}(\mathcal{H})$ is normal then $\operatorname{Ker} N=\operatorname{Ker} N^{*}=(\operatorname{Ran} N)^{\perp}=\left(\operatorname{Ran} N^{*}\right)^{\perp}$. (A normal operator N is an operator such that $N N^{*}=N^{*} N$, i.e., N commutes with its adjoint. Self-adjoint operators, as well as unitary operators, are normal.)

