Info: www.math.lmu.de/~michel/WS12_MQM.html

Problem 7. Let \mathcal{H} be a separable Hilbert space with norm $\|\|$ and scalar product \langle,$\rangle and$ let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis of \mathcal{H}. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathcal{H}. Show that the following two statements are equivalent.
(i) $x_{n} \rightharpoonup 0$ (i.e., x_{n} converges weakly to 0) as $n \rightarrow \infty$,
(ii) $\left\langle e_{m}, x_{n}\right\rangle \xrightarrow{n \rightarrow \infty} 0$ for each $m \in \mathbb{N}$ and $\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<C$ for some constant $C>0$.

Problem 8. (Useful identities and inequalities involving resolvents.) Let \mathcal{H} be a Hilbert space. As usual, given $T \in \mathcal{B}(\mathcal{H}), \rho(T)$ is the resolvent set for T and $R_{\lambda}(T), \lambda \in \rho(T)$, is the resolvent of T at λ, that is, $R_{\lambda}(T)=(\lambda \mathbb{1}-T)^{-1}$. Prove the following:
(i) $R_{\lambda}(T)-R_{\mu}(T)=(\mu-\lambda) R_{\lambda}(T) R_{\mu}(T) \quad \forall \lambda, \mu \in \rho(T)$.
(ii) $R_{\lambda}(T)-R_{\lambda}(S)=R_{\lambda}(T)(T-S) R_{\lambda}(S) \quad \forall \lambda \in \rho(T) \cap \rho(S)$.

Problem 9. Prove that $\int_{-\infty}^{+\infty} \frac{\sin ^{4} x}{x^{4}} \mathrm{~d} x=\frac{2 \pi}{3}$.

Problem 10. Let d be a positive integer, let $\alpha>0$, and define

$$
H^{\alpha}\left(\mathbb{R}^{d}\right):=\left\{\left.f \in L^{2}\left(\mathbb{R}^{d}\right)\left|\|f\|_{H^{\alpha}}^{2}:=\int_{\mathbb{R}^{d}}\left(1+(2 \pi|k|)^{2 \alpha}\right)\right| \widehat{f}(k)\right|^{2} \mathrm{~d} k<\infty\right\}
$$

By analogy with the proof of the Sobolev inequality for the space $H^{1}\left(\mathbb{R}^{2}\right)$ (Theorem 12.3 of the handout "Crash course in Analysis"), prove that if $d>2 \alpha$ and $p \in\left[2, \frac{2 d}{d-2 \alpha}\right)$ then

$$
\|f\|_{p} \leqslant C\|f\|_{H^{\alpha}} \quad \forall f \in H^{\alpha}\left(\mathbb{R}^{d}\right)
$$

for some constant C depending on d, p, and α, but independent of f.

