TMP Programme Munich – winter term 2012/2013

PROBLEMS IN CLASS - Tutorials of 11 and 12 December 2012 Info: www.math.lmu.de/~michel/WS12_MQM.html

Problem 7. Let \mathcal{H} be a separable Hilbert space with norm $\| \|$ and scalar product \langle , \rangle and let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis of \mathcal{H} . Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathcal{H} . Show that the following two statements are equivalent.

(i) $x_n \rightarrow 0$ (i.e., x_n converges weakly to 0) as $n \rightarrow \infty$,

(ii)
$$\langle e_m, x_n \rangle \xrightarrow{n \to \infty} 0$$
 for each $m \in \mathbb{N}$ and $\sup_{n \in \mathbb{N}} ||x_n|| < C$ for some constant $C > 0$.

Problem 8. (Useful identities and inequalities involving resolvents.) Let \mathcal{H} be a Hilbert space. As usual, given $T \in \mathcal{B}(\mathcal{H})$, $\rho(T)$ is the resolvent set for T and $R_{\lambda}(T)$, $\lambda \in \rho(T)$, is the resolvent of T at λ , that is, $R_{\lambda}(T) = (\lambda \mathbb{1} - T)^{-1}$. Prove the following:

- (i) $R_{\lambda}(T) R_{\mu}(T) = (\mu \lambda)R_{\lambda}(T)R_{\mu}(T) \quad \forall \lambda, \mu \in \rho(T).$
- (ii) $R_{\lambda}(T) R_{\lambda}(S) = R_{\lambda}(T)(T-S)R_{\lambda}(S) \quad \forall \lambda \in \rho(T) \cap \rho(S).$

Problem 9. Prove that $\int_{-\infty}^{+\infty} \frac{\sin^4 x}{x^4} \, \mathrm{d}x = \frac{2\pi}{3}$.

Problem 10. Let d be a positive integer, let $\alpha > 0$, and define

$$H^{\alpha}(\mathbb{R}^{d}) := \left\{ f \in L^{2}(\mathbb{R}^{d}) \mid \|f\|_{H^{\alpha}}^{2} := \int_{\mathbb{R}^{d}} \left(1 + (2\pi|k|)^{2\alpha} \right) |\widehat{f}(k)|^{2} \, \mathrm{d}k < \infty \right\}.$$

By analogy with the proof of the Sobolev inequality for the space $H^1(\mathbb{R}^2)$ (Theorem 12.3 of the handout "*Crash course in Analysis*"), prove that if $d > 2\alpha$ and $p \in [2, \frac{2d}{d-2\alpha})$ then

$$||f||_p \leqslant C ||f||_{H^{\alpha}} \qquad \forall f \in H^{\alpha}(\mathbb{R}^d)$$

for some constant C depending on d, p, and α , but independent of f.