TMP Programme Munich – winter term 2012/2013

PROBLEMS IN CLASS

Some of these problems will be discussed during the tutorials on 4/5 December 2012. Info: www.math.lmu.de/~michel/WS12_MQM.html

Problem 1. Let $f \in L^p(\Omega)$, $1 \le p < \infty$. Prove the dual characterisation of the norm of f,

$$||f||_{p} = \sup_{\substack{g \in L^{q}(\Omega) \\ ||g||_{q} = 1}} \left| \int_{\Omega} fg \, \mathrm{d}x \right| = \sup_{\substack{g \in \mathcal{D} \\ ||g||_{q} = 1}} \left| \int_{\Omega} fg \, \mathrm{d}x \right|$$

where \mathcal{D} is a dense subspace of $L^q(\Omega)$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Problem 2. Recall the notation

$$|\alpha| := \alpha_1 + \cdots + \alpha_d$$
, $D^{lpha} := \frac{\partial^{|\alpha|}}{\partial x_1^{lpha_1} \cdots \partial x_d^{lpha_d}}$, $x^{lpha} := x_1^{lpha_1} \cdots x_d^{lpha_d}$

for a *d*-dimensional multi-index $\alpha = (\alpha_1, ..., \alpha_d) \in \mathbb{N}_0^d$ and $x = (x_1, ..., x_d) \in \mathbb{R}^d$. Recall also that for any positive integer *k*,

$$D^k := \sum_{\substack{lpha \in \mathbb{N}_0^d \ |lpha| = k}} D^{lpha}$$

(In particular, there are $\frac{d(d+1)}{2}$ terms in $D^2 = \sum_{i \leq j} \frac{\partial^2}{\partial x_i \partial x_j}$ and only d terms in $\Delta = \sum_{j=1}^d \frac{\partial^2}{\partial x_j^2}$).

- (i) Prove that $\|\nabla f\|_2^2 \leq \|\Delta f\|_2 \|f\|_2 \ \forall f \in \mathcal{S}(\mathbb{R}^d).$
- (ii) Prove that $||D^2f||_2 \leq \frac{d(d+1)}{2} ||\Delta f||_2 \forall f \in \mathcal{S}(\mathbb{R}^d).$
- (iii) Prove that for any multi-index α there exists a constant $C_{d,|\alpha|}$ such that

$$\|D^{|\alpha|}f\|_2^2 \leqslant C_{d,|\alpha|} \|\Delta^{|\alpha|}f\|_2 \|f\|_2 \qquad \forall f \in \mathcal{S}(\mathbb{R}^d) \,.$$

(iv) Let d > 2, $p \in [2, \frac{2d}{d-2}]$, $a := d(\frac{1}{2} - \frac{1}{p})$. Prove that there exists a constant $C_{d,p}$ such that

$$||f||_p \leqslant C_{d,p} ||\nabla f||_2^a ||f||_2^{1-a} \qquad \forall f \in \mathcal{S}(\mathbb{R}^d).$$

(v) Let d > 2, $p \in [2, \frac{2d}{d-2}]$, $b := \frac{d}{2}(\frac{1}{2} - \frac{1}{p})$. Deduce from (i) and (iv) that there exists a constant $C_{d,p}$ such that

$$\|f\|_p \leqslant C_{d,p} \|\Delta f\|_2^b \|f\|_2^{1-b} \quad \forall f \in \mathcal{S}(\mathbb{R}^d).$$

Problem 3. Let $d \in \mathbb{N}$, $d \ge 3$, and let $V \in L^{d/2}(\mathbb{R}^d)$ be real-valued. Define the energy functional

$$\mathcal{E}[\psi] := \int_{\mathbb{R}^d} |\nabla \psi(x)|^2 \, \mathrm{d}x + \int_{\mathbb{R}^d} V(x) |\psi(x)|^2 \, \mathrm{d}x$$

for $\psi \in H^1(\mathbb{R}^d)$. Prove that for $\|V\|_{d/2}$ sufficiently small, the ground state energy

$$E_0:=\inf\{\mathcal{E}[\psi]:\,\psi\in H^1(\mathbb{R}^d),\|\psi\|_2=1\}.$$

is non-negative, $E_0 \ge 0$.

Problem 4. Let $\rho \in L^{p_1}(\mathbb{R}^3) \cap L^{p_2}(\mathbb{R}^3)$ with $1 \leq p_1 < \frac{3}{2} < p_2 \leq \infty$.

- (i) Prove that the function $\frac{1}{|\cdot|} * \rho : \mathbb{R}^3 \to \mathbb{C}$ is bounded, continuous, and vanishes as $|x| \to \infty$.
- (ii) Using Young's inequality, prove the bound

$$\left\|\frac{1}{|\cdot|} * \rho\right\|_{\infty} \leqslant C_{p_1, p_2} \|\rho\|_{p_1}^{a_1} \|\rho\|_{p_2}^{a_2} \tag{(\bullet)}$$

where $a_1 = (\frac{2}{3} - \frac{1}{p_2})/(\frac{1}{p_1} - \frac{1}{p_2})$ and $a_2 = (\frac{1}{p_1} - \frac{2}{3})/(\frac{1}{p_1} - \frac{1}{p_2})$, and where the constant C_{p_1,p_2} depends on p_1 and p_2 only and blows up as $p_1 \rightarrow \frac{3}{2}$ or $p_2 \rightarrow \frac{3}{2}$.

(iii) Let $p_1 = \frac{3}{2} - \varepsilon$ and $p_2 = \frac{3}{2} + \varepsilon$ with $\varepsilon > 0$. Show that as $\varepsilon \to 0$ the product of the two norms in the R.H.S. of (•) converges to $\|\rho\|_{3/2}$ (while C_{p_1,p_2} obviously blows up), but an inequality of the form $\||\cdot|^{-1} * \rho\|_{\infty} \leq C \|\rho\|_{3/2}$ is false.

Problem 5. Decide which of the following spaces are *C*^{*} algebras.

- (i) \mathbb{C}^n with the component-wise product and the norm $||v||_p := (\sum_{i=1}^n |v_i|^p)^{1/p}$, $1 \le p < \infty$, and $||v||_{\infty} = \max_i |v_i|$ for $v = (v_1, \ldots, v_n)$.
- (ii) $\mathfrak{M}_n(\mathbb{C})$, the set of $n \times n$ matrices with complex entries, with the norm $||M|| = (\operatorname{tr} M^* M)^{1/2} = \left(\sum_{i,j} |M_{ij}|^2\right)^{1/2}$ for $M = (M_{ij})$.
- (iii) $\mathfrak{M}_n(\mathbb{C})$ with the norm $||M||^2 = \sup_{v \in \mathbb{C}^n : ||v||_2 = 1} \sum_i |\sum_k M_{ik} v_k|^2$.
- (iv) $\mathfrak{P}(K)$, the set of polynomials on a compact set $K \subset \mathbb{C}^n$, with the norm $||P|| = \sup_{z \in K} |P(z)|$, $z = (z_1, \ldots, z_n)$.
- (v) $\mathscr{C}^r(K)$, the set of *r* times continuously differentiable functions *f* on $K \subset \mathbb{C}^n$, with norm $||f|| = \sup_{z \in K} |f(z)|$.
- (vi) $L^{p}(\Omega, \mu)$ with the norm $||f||_{p} = (\int |f|^{p} d\mu)^{1/p}$ for a positive measure μ on Ω .

Problem 6. Let \mathfrak{A} be a C^* algebra with identity $\mathbb{1}$. Prove the following properties of the spectrum of an operator $A \in \mathfrak{A}$.

(i)
$$\sigma(A)^n \subset \sigma(A^n)$$
 where $\sigma(A)^n = \{\lambda^n : \lambda \in \sigma(A)\}$
(ii) $\sigma(\lambda \mathbb{1} - A) = \lambda - \sigma(A)$
(iii) $\sigma(A^*) = \overline{\sigma(A)}$