PROBLEMS IN CLASS

Some of these problems will be discussed during the tutorials on 4/5 December 2012.
Info: www.math.lmu.de/~michel/WS12_MQM.html

Problem 1. Let $f \in L^{p}(\Omega), 1 \leq p<\infty$. Prove the dual characterisation of the norm of f,

$$
\|f\|_{p}=\sup _{\substack{g \in L^{q}(\Omega) \\\|\&\|_{q}=1}}\left|\int_{\Omega} f g \mathrm{~d} x\right|=\sup _{\substack{g \in \mathcal{D} \\\|g\|_{q}=1}}\left|\int_{\Omega} f g \mathrm{~d} x\right|
$$

where \mathcal{D} is a dense subspace of $L^{q}(\Omega)$ and $\frac{1}{p}+\frac{1}{q}=1$.

Problem 2. Recall the notation

$$
|\alpha|:=\alpha_{1}+\cdots+\alpha_{d}, \quad D^{\alpha}:=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{d}^{\alpha_{d}}}, \quad x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}
$$

for a d-dimensional multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$. Recall also that for any positive integer k,

$$
D^{k}:=\sum_{\substack{\alpha \in \mathbb{N}_{0}^{d} \\|\alpha|=k}} D^{\alpha}
$$

(In particular, there are $\frac{d(d+1)}{2}$ terms in $D^{2}=\sum_{i \leqslant j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$ and only d terms in $\Delta=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}}$.
(i) Prove that $\|\nabla f\|_{2}^{2} \leqslant\|\Delta f\|_{2}\|f\|_{2} \forall f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(ii) Prove that $\left\|D^{2} f\right\|_{2} \leqslant \frac{d(d+1)}{2}\|\Delta f\|_{2} \forall f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(iii) Prove that for any multi-index α there exists a constant $C_{d,|\alpha|}$ such that

$$
\left\|D^{|\alpha|} f\right\|_{2}^{2} \leqslant C_{d,|\alpha|}\left\|\Delta^{|\alpha|} f\right\|_{2}\|f\|_{2} \quad \forall f \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

(iv) Let $d>2, p \in\left[2, \frac{2 d}{d-2}\right], a:=d\left(\frac{1}{2}-\frac{1}{p}\right)$. Prove that there exists a constant $C_{d, p}$ such that

$$
\|f\|_{p} \leqslant C_{d, p}\|\nabla f\|_{2}^{a}\|f\|_{2}^{1-a} \quad \forall f \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

(v) Let $d>2, p \in\left[2, \frac{2 d}{d-2}\right], b:=\frac{d}{2}\left(\frac{1}{2}-\frac{1}{p}\right)$. Deduce from (i) and (iv) that there exists a constant $C_{d, p}$ such that

$$
\|f\|_{p} \leqslant C_{d, p}\|\Delta f\|_{2}^{b}\|f\|_{2}^{1-b} \quad \forall f \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

Problem 3. Let $d \in \mathbb{N}, d \geq 3$, and let $V \in L^{d / 2}\left(\mathbb{R}^{d}\right)$ be real-valued. Define the energy functional

$$
\mathcal{E}[\psi]:=\int_{\mathbb{R}^{d}}|\nabla \psi(x)|^{2} \mathrm{~d} x+\int_{\mathbb{R}^{d}} V(x)|\psi(x)|^{2} \mathrm{~d} x
$$

for $\psi \in H^{1}\left(\mathbb{R}^{d}\right)$. Prove that for $\|V\|_{d / 2}$ sufficiently small, the ground state energy

$$
E_{0}:=\inf \left\{\mathcal{E}[\psi]: \psi \in H^{1}\left(\mathbb{R}^{d}\right),\|\psi\|_{2}=1\right\}
$$

is non-negative, $E_{0} \geq 0$.
Problem 4. Let $\rho \in L^{p_{1}}\left(\mathbb{R}^{3}\right) \cap L^{p_{2}}\left(\mathbb{R}^{3}\right)$ with $1 \leqslant p_{1}<\frac{3}{2}<p_{2} \leqslant \infty$.
(i) Prove that the function $\frac{1}{|\cdot|} * \rho: \mathbb{R}^{3} \rightarrow \mathbb{C}$ is bounded, continuous, and vanishes as $|x| \rightarrow \infty$.
(ii) Using Young's inequality, prove the bound

$$
\left\|\frac{1}{|\cdot|} * \rho\right\|_{\infty} \leqslant C_{p_{1}, p_{2}}\|\rho\|_{p_{1}}^{a_{1}}\|\rho\|_{p_{2}}^{a_{2}}
$$

where $a_{1}=\left(\frac{2}{3}-\frac{1}{p_{2}}\right) /\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)$ and $a_{2}=\left(\frac{1}{p_{1}}-\frac{2}{3}\right) /\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right)$, and where the constant $C_{p_{1}, p_{2}}$ depends on p_{1} and p_{2} only and blows up as $p_{1} \rightarrow \frac{3}{2}$ or $p_{2} \rightarrow \frac{3}{2}$.
(iii) Let $p_{1}=\frac{3}{2}-\varepsilon$ and $p_{2}=\frac{3}{2}+\varepsilon$ with $\varepsilon>0$. Show that as $\varepsilon \rightarrow 0$ the product of the two norms in the R.H.S. of (\bullet) converges to $\|\rho\|_{3 / 2}$ (while $C_{p_{1, p_{2}}}$ obviously blows up), but an inequality of the form $\left\||\cdot|^{-1} * \rho\right\|_{\infty} \leqslant C\|\rho\|_{3 / 2}$ is false.

Problem 5. Decide which of the following spaces are C^{*} algebras.
(i) \mathbb{C}^{n} with the component-wise product and the norm $\|v\|_{p}:=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{1 / p}, 1 \leq p<$ ∞, and $\|v\|_{\infty}=\max _{i}\left|v_{i}\right|$ for $v=\left(v_{1}, \ldots, v_{n}\right)$.
(ii) $\mathfrak{M}_{n}(\mathbb{C})$, the set of $n \times n$ matrices with complex entries, with the norm $\|M\|=\left(\operatorname{tr} M^{*} M\right)^{1 / 2}=$ $\left(\sum_{i, j}\left|M_{i j}\right|^{2}\right)^{1 / 2}$ for $M=\left(M_{i j}\right)$.
(iii) $\mathfrak{M}_{n}(\mathbb{C})$ with the norm $\|M\|^{2}=\sup _{v \in \mathbb{C}^{n}:\|v\|_{2}=1} \sum_{i}\left|\sum_{k} M_{i k} v_{k}\right|^{2}$.
(iv) $\mathfrak{P}(K)$, the set of polynomials on a compact set $K \subset \mathbb{C}^{n}$, with the norm $\|P\|=\sup _{z \in K}|P(z)|$, $z=\left(z_{1}, \ldots, z_{n}\right)$.
(v) $\mathscr{C}^{r}(K)$, the set of r times continuously differentiable functions f on $K \subset \mathbb{C}^{n}$, with norm $\|f\|=\sup _{z \in K}|f(z)|$.
(vi) $L^{p}(\Omega, \mu)$ with the norm $\|f\|_{p}=\left(\int|f|^{p} \mathrm{~d} \mu\right)^{1 / p}$ for a positive measure μ on Ω.

Problem 6. Let \mathfrak{A} be a C^{*} algebra with identity $\mathbb{1}$. Prove the following properties of the spectrum of an operator $A \in \mathfrak{A}$.
(i) $\sigma(A)^{n} \subset \sigma\left(A^{n}\right)$ where $\sigma(A)^{n}=\left\{\lambda^{n}: \lambda \in \sigma(A)\right\}$
(ii) $\sigma(\lambda \mathbb{1}-A)=\lambda-\sigma(A)$
(iii) $\sigma\left(A^{*}\right)=\overline{\sigma(A)}$

