TMP Programme Munich – winter term 2012/2013

HOMEWORK ASSIGNMENT 13

Hand-in deadline: Monday 11 February 2013 by 6 p.m. in the "MQM" drop box. Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English. Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 49. Let $\{q_n\}_{n=1}^{\infty}$ be an enumeration of the rationals in [0, 1]. Define

$$V(x) := \begin{cases} 0, & x \in \mathbb{Q} \cap [0, 1] \\ \sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{|x - q_n|}}, & x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

- (i) Show that $V \in L^1[0, 1]$.
- (ii) Consider the following self-adjoint operators acting on the Hilbert space $L^2[0,1]$: the operator $-\frac{d^2}{dx^2}$ on the domain $\mathcal{D}(-\frac{d^2}{dx^2}) = \{f \in H^2(\mathbb{R}) \mid f(0) = f(1) = 0\}$, and the operator of multiplication by V on its natural domain $\mathcal{D}(V)$ (see Exercise 39). Show that $\mathcal{D}(-\frac{d^2}{dx^2} + V) \equiv \mathcal{D}(-\frac{d^2}{dx^2}) \cap \mathcal{D}(V) = \{\mathbf{0}\}$ (where **0** is the zero function).
- (iii) Produce a *dense* subspace of $L^2[0, 1]$ where the quadratic form of the energy of $-\frac{d^2}{dx^2} + V$ is well defined and finite.

Exercise 50. Let \mathcal{H} be a complex Hilbert space. Let A and B be two bounded and self-adjoint operators acting on \mathcal{H} . Denote by $\mathbb{1}$ and \mathbb{O} respectively the identity and the zero operator on \mathcal{H} .

- (i) Assume that $A \ge 1$. Prove that A is invertible and $\mathbb{O} \le A^{-1} \le 1$.
- (ii) Assume that $\mathbb{O} \leq A \leq B$. Prove that both $A + \lambda \mathbb{1}$ and $B + \lambda \mathbb{1}$ are invertible for any $\lambda > 0$ and that $(B + \lambda \mathbb{1})^{-1} \leq (A + \lambda \mathbb{1})^{-1}$. (*Hint:* use (i).)
- (iii) Assume that $\mathbb{O} \leq A \leq B$. Prove that $\sqrt{A} \leq \sqrt{B}$. (*Hint:* prove and use the identity

$$\sqrt{x} = \frac{1}{\pi} \int_0^\infty \frac{1}{\sqrt{\lambda}} \left(1 - \frac{\lambda}{x+\lambda} \right) d\lambda \qquad \forall x \ge 0 \,,$$

then use (ii).)

(iv) Assume that $\mathbb{O} \leq A \leq B$. Show that this implies neither $A^2 \leq B^2$ nor $AB \geq \mathbb{O}$ (i.e., disprove both inequalities with counterexamples, you can think of 2×2 matrices), but prove that $\sqrt{AB}\sqrt{A} \geq \mathbb{O}$ and $\sqrt{B}A\sqrt{B} \geq \mathbb{O}$ are correct.

Exercise 51.

(i) Let $f \in H^1(0, 1)$. Prove:

$$\sup_{x \in [0,1]} |f(x)|^2 \leq \varepsilon \int_0^1 |f'(t)|^2 dt + (1 + \frac{1}{\varepsilon}) \int_0^1 |f(t)|^2 dt \qquad \forall \varepsilon > 0.$$

(ii) Let
$$V \in L^2_{\text{loc}}(\mathbb{R})$$
 be such that $\sup_{n \in \mathbb{Z}} \int_n^{n+1} |V(x)|^2 dx < \infty$. Prove:

$$\forall \varepsilon > 0 \ \exists b > 0 \ \text{such that} \ \|Vf\|_2 \leqslant \varepsilon \|f''\|_2 + b\|f\|_2 \qquad \forall f \in H^2(\mathbb{R}).$$

Exercise 52. Let A be a densely defined (possibly unbounded), self-adjoint operator in a Hilbert space \mathcal{H} . Denote by $\{E_{\Omega}\}_{\Omega}$ the projection-valued measure associated with A. Let ψ_1, \ldots, ψ_N be N linearly independent vectors in the domain of A and let $\mu \in \mathbb{R}$ be such that

$$\langle \psi, A\psi\rangle \ < \ \mu \|\psi\|^2$$

for any non-zero element $\psi \in \text{span}\{\psi_1, \ldots, \psi_N\}$. Prove that $\dim \text{Ran}(E_{(-\infty,\mu]}) \ge N$.