Mathematical Quantum Mechanics

TMP Programme Munich - winter term 2012/2013

HOMEWORK ASSIGNMENT 13
Hand-in deadline: Monday 11 February 2013 by 6 p.m. in the "MQM" drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 49. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of the rationals in $[0,1]$. Define

$$
V(x):=\left\{\begin{array}{cl}
0, & x \in \mathbb{Q} \cap[0,1] \\
\sum_{n=1}^{\infty} \frac{1}{2^{n} \sqrt{\left|x-q_{n}\right|}}, & x \in[0,1] \backslash \mathbb{Q}
\end{array} .\right.
$$

(i) Show that $V \in L^{1}[0,1]$.
(ii) Consider the following self-adjoint operators acting on the Hilbert space $L^{2}[0,1]$: the operator $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$ on the domain $\mathcal{D}\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right)=\left\{f \in H^{2}(\mathbb{R}) \mid f(0)=f(1)=0\right\}$, and the operator of multiplication by V on its natural domain $\mathcal{D}(V)$ (see Exercise 39). Show that $\mathcal{D}\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V\right) \equiv \mathcal{D}\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right) \cap \mathcal{D}(V)=\{0\}$ (where $\mathbf{0}$ is the zero function).
(iii) Produce a dense subspace of $L^{2}[0,1]$ where the quadratic form of the energy of $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V$ is well defined and finite.

Exercise 50. Let \mathcal{H} be a complex Hilbert space. Let A and B be two bounded and self-adjoint operators acting on \mathcal{H}. Denote by $\mathbb{1}$ and \mathbb{O} respectively the identity and the zero operator on \mathcal{H}.
(i) Assume that $A \geqslant \mathbb{1}$. Prove that A is invertible and $\mathbb{O} \leqslant A^{-1} \leqslant \mathbb{1}$.
(ii) Assume that $\mathbb{O} \leqslant A \leqslant B$. Prove that both $A+\lambda \mathbb{1}$ and $B+\lambda \mathbb{1}$ are invertible for any $\lambda>0$ and that $(B+\lambda \mathbb{1})^{-1} \leqslant(A+\lambda \mathbb{1})^{-1}$. (Hint: use (i).)
(iii) Assume that $\mathbb{O} \leqslant A \leqslant B$. Prove that $\sqrt{A} \leqslant \sqrt{B}$. (Hint: prove and use the identity

$$
\sqrt{x}=\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{\sqrt{\lambda}}\left(1-\frac{\lambda}{x+\lambda}\right) \mathrm{d} \lambda \quad \forall x \geqslant 0
$$

then use (ii).)
(iv) Assume that $\mathbb{O} \leqslant A \leqslant B$. Show that this implies neither $A^{2} \leqslant B^{2}$ nor $A B \geqslant \mathbb{O}$ (i.e., disprove both inequalities with counterexamples, you can think of 2×2 matrices), but prove that $\sqrt{A} B \sqrt{A} \geqslant \mathbb{O}$ and $\sqrt{B} A \sqrt{B} \geqslant \mathbb{O}$ are correct.

Exercise 51.

(i) Let $f \in H^{1}(0,1)$. Prove:

$$
\sup _{x \in[0,1]}|f(x)|^{2} \leqslant \varepsilon \int_{0}^{1}\left|f^{\prime}(t)\right|^{2} \mathrm{~d} t+\left(1+\frac{1}{\varepsilon}\right) \int_{0}^{1}|f(t)|^{2} \mathrm{~d} t \quad \forall \varepsilon>0 .
$$

(ii) Let $V \in L_{\text {loc }}^{2}(\mathbb{R})$ be such that $\sup _{n \in \mathbb{Z}} \int_{n}^{n+1}|V(x)|^{2} \mathrm{~d} x<\infty$. Prove:

$$
\forall \varepsilon>0 \exists b>0 \text { such that }\|V f\|_{2} \leqslant \varepsilon\left\|f^{\prime \prime}\right\|_{2}+b\|f\|_{2} \quad \forall f \in H^{2}(\mathbb{R}) .
$$

Exercise 52. Let A be a densely defined (possibly unbounded), self-adjoint operator in a Hilbert space \mathcal{H}. Denote by $\left\{E_{\Omega}\right\}_{\Omega}$ the projection-valued measure associated with A. Let $\psi_{1}, \ldots, \psi_{N}$ be N linearly independent vectors in the domain of A and let $\mu \in \mathbb{R}$ be such that

$$
\langle\psi, A \psi\rangle<\mu\|\psi\|^{2}
$$

for any non-zero element $\psi \in \operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}$. Prove that $\operatorname{dim} \operatorname{Ran}\left(E_{(-\infty, \mu]}\right) \geqslant N$.

