TMP Programme Munich – winter term 2012/2013

HOMEWORK ASSIGNMENT 11-12

Hand-in deadline: Tuesday 22 January 2013 by 6 p.m. in the "MQM" drop box.

Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English. Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 41. Let T be a bounded linear operator on a Hilbert space \mathcal{H} . Prove that

$$T \text{ is compact} \qquad \Leftrightarrow \qquad \begin{cases} \text{ for every sequence } \{x_n\}_{n=1}^{\infty} \text{ in } \mathcal{H}, \\ x_n \xrightarrow{\text{weakly}}{n \to \infty} x \implies T x_n \xrightarrow{\parallel \parallel}{n \to \infty} T x. \end{cases}$$

(*Hint*: Uniform Boundedness for \Rightarrow . Banach-Alaoglu for \Leftarrow .)

Exercise 42. Let H and H_0 be two self-adjoint operators on a given Hilbert space \mathcal{H} . Consider the corresponding wave operators Ω_+ and Ω_- defined by

$$\mathcal{D}(\Omega_{\pm}) := \left\{ \psi \in \mathcal{H} \, | \, \exists \lim_{t \to \pm \infty} e^{\mathrm{i}tH} e^{-\mathrm{i}tH_0} \psi \right\}, \qquad \Omega_{\pm} \psi := \lim_{t \to \pm \infty} e^{\mathrm{i}tH} e^{-\mathrm{i}tH_0} \psi.$$

- (i) Prove that both $\mathcal{D}(\Omega_{\pm})$ and $\operatorname{Ran}(\Omega_{\pm})$ are closed subspaces of \mathcal{H} and that $\Omega_{\pm} : \mathcal{D}(\Omega_{\pm}) \to \operatorname{Ran}(\Omega_{\pm})$ is unitary.
- (ii) Let $t \in \mathbb{R}$. Prove that e^{-itH_0} leaves invariant either subspaces of the decomposition $\mathcal{H} = \mathcal{D}(\Omega_{\pm}) \oplus \mathcal{D}(\Omega_{\pm})^{\perp}$ and that e^{-itH} leaves invariant either subspaces of the decomposition $\mathcal{H} = \operatorname{Ran}(\Omega_{\pm}) \oplus \operatorname{Ran}(\Omega_{\pm})^{\perp}$.
- (iii) Prove that $\Omega_{\pm}H_0\psi = H\Omega_{\pm}\psi \;\forall\psi \in \mathcal{D}(\Omega_{\pm}) \cap \mathcal{D}(H_0).$ (*Hint:* prove first $\Omega_{\pm}e^{-itH_0}\phi = e^{-itH}\Omega_{\pm}\phi \;\forall\phi \in \mathcal{D}(\Omega_{\pm}).$ The conclusion then follows from Stone's theorem – this was only stated in class and in the lecture notes, so here you may just proceed under the additional assumption that $\Omega_{\pm}\phi \in \mathcal{D}(H)$; this extra fact is not needed, it is a consequence of Stone's theorem.)

Exercise 43.

(i) Let H and H_0 be two self-adjoint operators on a given Hilbert space \mathcal{H} . Denote with Ω_+ and Ω_- the corresponding wave operators (see Exercise 42). Assume that $\mathcal{D}(H) \subset \mathcal{D}(H_0)$. Prove that

$$t_0 \ge 0$$
, $\psi \in \mathcal{D}(H_0)$, and $\int_{t_0}^{+\infty} \left\| (H - H_0) e^{\mp i t H_0} \psi \right\| dt < +\infty \qquad \Rightarrow \qquad \psi \in \mathcal{D}(\Omega_{\pm})$.

(ii) Let $V \in L^2(\mathbb{R}^3)$, real-valued. Consider the self-adjoint operators $H_0 = -\Delta$ and $H = -\Delta + V$ on the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^3)$, with domain $\mathcal{D}(H_0) = \mathcal{D}(H) = H^2(\mathbb{R}^3)$. Let Ω_+ and Ω_- be the corresponding wave operators (see Exercise 42). Prove that $\mathcal{D}(\Omega_{\pm}) = \mathcal{H}$. (*Hint:* part (i) and the L^{∞}/L^1 -dispersive estimate, with a density argument on ψ .) **Exercise 44.** Let $\mathcal{H} = L^2(\mathbb{R})$. For each $t \in \mathbb{R}$ define $U_t : \mathcal{H} \to \mathcal{H}$ by

$$(U_t f)(x) := e^{-t/2} f(e^{-t}x)$$
 for a.e. x , $f \in \mathcal{H}$.

- (i) Prove that $\{U_t \mid t \in \mathbb{R}\}$ is a strongly continuous, one-parameter unitary group on \mathcal{H} .
- (ii) Define $D := \text{strong-lim}_{t \to 0} \frac{U_t \mathbb{1}}{\mathrm{i} t}$ on the subspace $C_0^{\infty}(\mathbb{R})$. Show that D define a symmetric operator and find its explicit action.