Mathematical Quantum Mechanics

TMP Programme Munich - winter term 2012/2013

HOMEWORK ASSIGNMENT 10

Hand-in deadline: Tuesday 15 January 2013 by 6 p.m. in the "MQM" drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 37. Consider the map $V: L^{2}[0,1] \rightarrow L^{2}[0,1],(V f)(x):=\int_{0}^{x} f(y) \mathrm{d} y$ for a.a. $x \in[0,1]$.
(i) Show that V is bounded.
(ii) Show that V is compact.
(iii) Show that V has no eigenvalues.
(iv) Show that $\sigma(V)=\{0\}$.

Exercise 38. Let $d \in \mathbb{N}$. Let A be a compact operator on $L^{2}\left(\mathbb{R}^{d}\right)$ such that its singular value decomposition ${ }^{(1)} A=\sum_{j} \mu_{j}\left|v_{j}\right\rangle\left\langle u_{j}\right|$ satisfies $\sum_{j} \mu_{j}^{2}<\infty$. Show that there exists $k \in$ $L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
(A f)(\cdot)=\int_{\mathbb{R}^{d}} k(\cdot, y) f(y) \mathrm{d} y \quad \forall f \in L^{2}\left(\mathbb{R}^{d}\right) \quad \text { and } \quad\|k\|_{2}^{2}=\sum_{j} \mu_{j}^{2} .
$$

${ }^{(1)}$ See the Section "Crash course on operators on a Hilbert space" of the handout "Many-body quantum dynamics": $\left\{u_{j}\right\}_{j}$ and $\left\{v_{j}\right\}_{j}$ are two orthonormal systems of $L^{2}\left(\mathbb{R}^{d}\right),\left\{\mu_{j}\right\}_{j}$ are non-negative numbers.

Exercise 39. Let (X, μ) be a measure space. (It is understood that the measure μ is σ-finite.) Let $\phi: X \rightarrow \mathbb{C}$ be a (possibly unbounded) measurable function. Consider the linear map M_{ϕ} on $L^{2}(X, \mathrm{~d} \mu)$ whose domain and action are defined by

$$
\begin{aligned}
\mathcal{D}\left(M_{\phi}\right) & :=\left\{f \in L^{2}(X, \mathrm{~d} \mu) \mid \phi f \in L^{2}(X, \mathrm{~d} \mu)\right\} \\
\left(M_{\phi} f\right)(x) & :=\phi(x) f(x) \quad \mu \text {-a.e. }
\end{aligned}
$$

(i) Show that $\mathcal{D}\left(M_{\phi}\right)$ is dense in $L^{2}(X, \mathrm{~d} \mu)$.
(ii) Show that $M_{\phi}^{*}=M_{\bar{\phi}}$ (in particular, M_{ϕ} is self-adjoint $\Leftrightarrow \phi$ is real-valued). (Warning: you need to check the domain, see Def. 7.2 in the handout "Many-body".)
(iii) Define ess $\operatorname{ran} \phi:=\{\lambda \in \mathbb{C} \mid \forall \varepsilon>0 \mu(\{x \in X| | \lambda-\phi(x) \mid<\varepsilon\})>0\}$, the "essential range" of ϕ. Show that $\sigma\left(M_{\phi}\right)=$ ess ran ϕ.
(iv) Show that λ is an eigenvalue of $M_{\phi} \Leftrightarrow \mu\left(\left\{\phi^{-1}(\lambda)\right\}\right)>0$.

Exercise 40. Consider the position and the momentum operators on \mathbb{R}, i.e.:

- Q is the operator of multiplication by x on $L^{2}(\mathbb{R}, \mathrm{~d} x)$ with domain $\mathcal{D}(Q)$ given in Ex. 39,
- $P=-\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} x}$ on $L^{2}(\mathbb{R}, \mathrm{~d} x)$ with domain $\mathcal{D}(P)=H^{1}(\mathbb{R}, \mathrm{~d} x)$.
(i) Show that Q is self-adjoint, has no eigenvalue, and $\sigma(Q)=\mathbb{R}$.
(ii) Show that P is self-adjoint, has no eigenvalue, and $\sigma(P)=\mathbb{R}$.
(Hint: you may either find first the adjoint operator, or apply the results from Ex. 39 above.)

