TMP Programme Munich – winter term 2012/2013

HOMEWORK ASSIGNMENT 10

Hand-in deadline: Tuesday 15 January 2013 by 6 p.m. in the "MQM" drop box. **Rules:** Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English. **Info:** www.math.lmu.de/~michel/WS12_MQM.html

Exercise 37. Consider the map $V: L^2[0,1] \to L^2[0,1], (Vf)(x) := \int_0^x f(y) dy$ for a.a. $x \in [0,1]$.

- (i) Show that V is bounded.
- (ii) Show that V is compact.
- (iii) Show that V has no eigenvalues.
- (iv) Show that $\sigma(V) = \{0\}$.

Exercise 38. Let $d \in \mathbb{N}$. Let A be a compact operator on $L^2(\mathbb{R}^d)$ such that its singular value decomposition⁽¹⁾ $A = \sum_j \mu_j |v_j\rangle \langle u_j|$ satisfies $\sum_j \mu_j^2 < \infty$. Show that there exists $k \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$ such that

$$(Af)(\cdot) = \int_{\mathbb{R}^d} k(\cdot, y) f(y) \, \mathrm{d}y \quad \forall f \in L^2(\mathbb{R}^d) \qquad \text{and} \qquad \|k\|_2^2 = \sum_j \mu_j^2 \, \mathrm{d}y$$

⁽¹⁾ See the Section "Crash course on operators on a Hilbert space" of the handout "Many-body quantum dynamics": $\{u_j\}_j$ and $\{v_j\}_j$ are two orthonormal systems of $L^2(\mathbb{R}^d)$, $\{\mu_j\}_j$ are non-negative numbers.

Exercise 39. Let (X, μ) be a measure space. (It is understood that the measure μ is σ -finite.) Let $\phi : X \to \mathbb{C}$ be a (possibly unbounded) measurable function. Consider the linear map M_{ϕ} on $L^2(X, d\mu)$ whose domain and action are defined by

$$\mathcal{D}(M_{\phi}) := \{ f \in L^2(X, \mathrm{d}\mu) \, | \, \phi f \in L^2(X, \mathrm{d}\mu) \}$$
$$M_{\phi}f)(x) := \phi(x)f(x) \quad \mu\text{-a.e.}$$

(i) Show that $\mathcal{D}(M_{\phi})$ is dense in $L^2(X, d\mu)$.

(

- (ii) Show that $M_{\phi}^* = M_{\overline{\phi}}$ (in particular, M_{ϕ} is self-adjoint $\Leftrightarrow \phi$ is real-valued). (Warning: you need to check the domain, see Def. 7.2 in the handout "Many-body".)
- (iii) Define ess ran $\phi := \{\lambda \in \mathbb{C} | \forall \varepsilon > 0 \ \mu(\{x \in X | |\lambda \phi(x)| < \varepsilon\}) > 0\}$, the "essential range" of ϕ . Show that $\sigma(M_{\phi}) = \text{ess ran } \phi$.
- (iv) Show that λ is an eigenvalue of $M_{\phi} \Leftrightarrow \mu(\{\phi^{-1}(\lambda)\}) > 0$.

Exercise 40. Consider the position and the momentum operators on \mathbb{R} , i.e.:

- Q is the operator of multiplication by x on $L^2(\mathbb{R}, dx)$ with domain $\mathcal{D}(Q)$ given in Ex. 39,
- $P = -i\frac{d}{dx}$ on $L^2(\mathbb{R}, dx)$ with domain $\mathcal{D}(P) = H^1(\mathbb{R}, dx)$.
- (i) Show that Q is self-adjoint, has no eigenvalue, and $\sigma(Q) = \mathbb{R}$.
- (ii) Show that P is self-adjoint, has no eigenvalue, and $\sigma(P) = \mathbb{R}$.

(*Hint:* you may either find first the adjoint operator, or apply the results from Ex. 39 above.)