TMP Programme Munich – winter term 2012/2013

HOMEWORK ASSIGNMENT 09

Hand-in deadline: Tuesday 8 January 2013 by 6 p.m. in the "MQM" drop box.

Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.

Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 33. Let $d \in \mathbb{N}$, $d \geq 3$. Consider the Hamiltonian $H = -\Delta - V$ in d dimensions, where the potential V is such that $V \in L^{d/2}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$ and $\lim_{|x|\to\infty} V(x) = 0$. Assume that for some E < 0 and some $\psi \in H^2(\mathbb{R}^d)$ one has $H\psi = E\psi$ as an identity in $L^2(\mathbb{R}^d)$.

(i) Let $g \in C^2(\mathbb{R}^d)$ be real-valued, bounded, and with bounded first and second order partial derivatives. Prove that

$$\langle g\psi, (H-E)g\psi \rangle = \langle \psi, |\nabla g|^2\psi \rangle.$$

(ii) Pick $\xi \in C^{\infty}(\mathbb{R}, [0, 1])$ such that $\xi(t) = 0$ for $t \leq \frac{1}{2}$ and $\xi(t) = 1$ for $t \geq 1$. Set

$$\chi_R(x) := \xi \left(\frac{|x|}{R}\right) \qquad x \in \mathbb{R}^d, \ R \ge 1,$$
$$f_{\varepsilon}(x) := \frac{\beta |x|}{1 + \varepsilon |x|} \qquad x \in \mathbb{R}^d, \ \varepsilon > 0, \ \beta \in (0, \sqrt{-E}).$$

Deduce from (i) that for every sufficiently large $R \ge 1$ there are constants $\delta_R, C_{\beta,R} > 0$ such that

$$\left\| \chi_{\scriptscriptstyle R} \, e^{f_{\varepsilon}} \, \psi \, \right\|_2^2 \, \leqslant \, \frac{C_{\beta,R}}{-E - \beta^2 - \delta_R} \, \|\psi\|_2^2 \qquad \forall \varepsilon > 0 \, .$$

(Notice that $\delta_R \xrightarrow{R \to \infty} 0$ and $C_{\beta,R}$ is bounded in β as $\beta \to 0$.)

(iii) Deduce from (ii) that for every sufficiently large $R \ge 1$

$$\left\| \mathbb{1}_{\{|x| \ge R\}} e^{\beta|x|} \psi \right\|_{2}^{2} \leqslant \frac{C_{\beta,R}}{-E - \beta^{2} - \delta_{R}} \|\psi\|_{2}^{2}$$

(i.e., the bound state ψ is exponentially localised).

Exercise 34. Consider the three-dimensional system consisting of two fixed nuclei each with charge Z, placed at a distance R apart, and 2 electrons subject to their mutual repulsion and to the attraction of the nuclei. The spin of the particles, the nucleus-nucleus repulsion, and the fermionic symmetry shall be neglected in this problem. Let $E_{\rm GS}(R)$ be the ground state energy of such a system. Prove that

$$\lim_{R \to \infty} E_{\rm GS}(R) = -\frac{Z^2}{2}.$$

(*Hint:* a good trial function for the upper bound, an IMS-type localisation in both variables for the lower bound, i.e., write $1 = \chi_0^2(x_j) + \chi_R^2(x_j) + \overline{\chi}^2(x_j)$, j = 1, 2, for suitable $\chi_0, \chi_R, \overline{\chi}$.)

Exercise 35.

(i) Let $d \in \mathbb{R}$. Let $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ be a measurable function. Set

$$k_1(x) := \int_{\mathbb{R}^3} |k(x,y)| \mathrm{d}y \quad \text{for a.e.} x \in \mathbb{R}^d, \qquad k_2(y) := \int_{\mathbb{R}^3} |k(x,y)| \mathrm{d}x \quad \text{for a.e.} y \in \mathbb{R}^d.$$

Assume that $k_1, k_2 \in L^{\infty}(\mathbb{R}^d)$. Prove that $(Af)(x) := \int_{\mathbb{R}^d} k(x, y) f(y) dy, f \in L^2(\mathbb{R}^d)$, defines a linear bounded operator $A : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ with $||A|| \leq ||k_1||_{\infty}^{1/2} ||k_2||_{\infty}^{1/2}$.

(ii) Let $k(x, y) := \pi^{-4}(x^2 + y^2 + 1)^{-2}$, $x, y \in \mathbb{R}^3$. Define A as in part (i). Can the operator A have an eigenvalue 1? Justify your answer.

Exercise 36. Let $d \in \mathbb{R}$. Let $k \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$. Set

$$(Af)(x) := \int_{\mathbb{R}^d} k(x, y) f(y) dy \quad \text{for a.e. } x \in \mathbb{R}^d, \quad f \in L^2(\mathbb{R}^d).$$
(*)

- (i) Show that (*) defines a bounded operator $A: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ with $||A|| \leq ||k||_{L^2(\mathbb{R}^d \times \mathbb{R}^d)}$.
- (ii) Produce a sequence $\{A_n\}_{n=1}^{\infty}$ of finite rank operators in $\mathcal{B}(L^2(\mathbb{R}^d))$ such that $A_n \xrightarrow{n \to \infty} A$ in the operator norm. (Recall: "finite rank" means that the image is finite-dimensional.)
- (iii) Let $\{f_n\}_{n=1}^{\infty}$ be an orthonormal basis of $L^2(\mathbb{R}^d)$. Show that

$$\sum_{n=1}^{\infty} \|Af_n\|_{L^2(\mathbb{R}^d)}^2 = \|k\|_{L^2(\mathbb{R}^d \times \mathbb{R}^d)}^2$$

irrespectively of the choice of the orthonormal basis $\{f_n\}_{n=1}^{\infty}$.