## Mathematical Quantum Mechanics

TMP Programme Munich - winter term 2012/2013

## HOMEWORK ASSIGNMENT 09

Hand-in deadline: Tuesday 8 January 2013 by 6 p.m. in the "MQM" drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 33. Let $d \in \mathbb{N}, d \geqslant 3$. Consider the Hamiltonian $H=-\Delta-V$ in $d$ dimensions, where the potential $V$ is such that $V \in L^{d / 2}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ and $\lim _{|x| \rightarrow \infty} V(x)=0$. Assume that for some $E<0$ and some $\psi \in H^{2}\left(\mathbb{R}^{d}\right)$ one has $H \psi=E \psi$ as an identity in $L^{2}\left(\mathbb{R}^{d}\right)$.
(i) Let $g \in C^{2}\left(\mathbb{R}^{d}\right)$ be real-valued, bounded, and with bounded first and second order partial derivatives. Prove that

$$
\left.\langle g \psi,(H-E) g \psi\rangle=\left.\langle\psi,| \nabla g\right|^{2} \psi\right\rangle .
$$

(ii) Pick $\xi \in C^{\infty}(\mathbb{R},[0,1])$ such that $\xi(t)=0$ for $t \leqslant \frac{1}{2}$ and $\xi(t)=1$ for $t \geqslant 1$. Set

$$
\begin{aligned}
\chi_{R}(x):=\xi\left(\frac{|x|}{R}\right) & x \in \mathbb{R}^{d}, R \geqslant 1, \\
f_{\varepsilon}(x):=\frac{\beta|x|}{1+\varepsilon|x|} & x \in \mathbb{R}^{d}, \varepsilon>0, \beta \in(0, \sqrt{-E}) .
\end{aligned}
$$

Deduce from (i) that for every sufficiently large $R \geqslant 1$ there are constants $\delta_{R}, C_{\beta, R}>0$ such that

$$
\left\|\chi_{R} e^{f_{\varepsilon}} \psi\right\|_{2}^{2} \leqslant \frac{C_{\beta, R}}{-E-\beta^{2}-\delta_{R}}\|\psi\|_{2}^{2} \quad \forall \varepsilon>0 .
$$

(Notice that $\delta_{R} \xrightarrow{R \rightarrow \infty} 0$ and $C_{\beta, R}$ is bounded in $\beta$ as $\beta \rightarrow 0$.)
(iii) Deduce from (ii) that for every sufficiently large $R \geqslant 1$

$$
\left\|\mathbb{1}_{\{|x| \geqslant R\}} e^{\beta|x|} \psi\right\|_{2}^{2} \leqslant \frac{C_{\beta, R}}{-E-\beta^{2}-\delta_{R}}\|\psi\|_{2}^{2}
$$

(i.e., the bound state $\psi$ is exponentially localised).

Exercise 34. Consider the three-dimensional system consisting of two fixed nuclei each with charge $Z$, placed at a distance $R$ apart, and 2 electrons subject to their mutual repulsion and to the attraction of the nuclei. The spin of the particles, the nucleus-nucleus repulsion, and the fermionic symmetry shall be neglected in this problem. Let $E_{\mathrm{GS}}(R)$ be the ground state energy of such a system. Prove that

$$
\lim _{R \rightarrow \infty} E_{\mathrm{GS}}(R)=-\frac{Z^{2}}{2}
$$

(Hint: a good trial function for the upper bound, an IMS-type localisation in both variables for the lower bound, i.e., write $1=\chi_{0}^{2}\left(x_{j}\right)+\chi_{R}^{2}\left(x_{j}\right)+\bar{\chi}^{2}\left(x_{j}\right), j=1,2$, for suitable $\chi_{0}, \chi_{R}, \bar{\chi}$.)

## Exercise 35.

(i) Let $d \in \mathbb{R}$. Let $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a measurable function. Set

$$
k_{1}(x):=\int_{\mathbb{R}^{3}}|k(x, y)| \mathrm{d} y \quad \text { for a.e. } x \in \mathbb{R}^{d}, \quad k_{2}(y):=\int_{\mathbb{R}^{3}}|k(x, y)| \mathrm{d} x \quad \text { for a.e. } y \in \mathbb{R}^{d} .
$$

Assume that $k_{1}, k_{2} \in L^{\infty}\left(\mathbb{R}^{d}\right)$. Prove that $(A f)(x):=\int_{\mathbb{R}^{d}} k(x, y) f(y) \mathrm{d} y, f \in L^{2}\left(\mathbb{R}^{d}\right)$, defines a linear bounded operator $A: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ with $\|A\| \leqslant\left\|k_{1}\right\|_{\infty}^{1 / 2}\left\|k_{2}\right\|_{\infty}^{1 / 2}$.
(ii) Let $k(x, y):=\pi^{-4}\left(x^{2}+y^{2}+1\right)^{-2}, x, y \in \mathbb{R}^{3}$. Define $A$ as in part (i). Can the operator $A$ have an eigenvalue 1? Justify your answer.

Exercise 36. Let $d \in \mathbb{R}$. Let $k \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$. Set

$$
\begin{equation*}
(A f)(x):=\int_{\mathbb{R}^{d}} k(x, y) f(y) \mathrm{d} y \quad \text { for a.e. } x \in \mathbb{R}^{d}, \quad f \in L^{2}\left(\mathbb{R}^{d}\right) \tag{*}
\end{equation*}
$$

(i) Show that $(*)$ defines a bounded operator $A: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ with $\|A\| \leqslant\|k\|_{L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)}$.
(ii) Produce a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of finite rank operators in $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ such that $A_{n} \xrightarrow{n \rightarrow \infty} A$ in the operator norm. (Recall: "finite rank" means that the image is finite-dimensional.)
(iii) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$. Show that

$$
\sum_{n=1}^{\infty}\left\|A f_{n}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}=\|k\|_{L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)}^{2}
$$

irrespectively of the choice of the orthonormal basis $\left\{f_{n}\right\}_{n=1}^{\infty}$.

