Mathematical Quantum Mechanics

TMP Programme Munich – winter term 2012/2013

HOMEWORK ASSIGNMENT 06

Hand-in deadline: Tuesday 4 December 2012 by 6 p.m. in the "MQM" drop box. Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be

justified. You can hand in your solutions in German or in English.

Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 21. Let $d \in \mathbb{N}$.

- (i) Construct two functions $\chi_1, \chi_2 \in C^{\infty}(\mathbb{R}^d)$ with the following properties $\forall x \in \mathbb{R}^d$: $0 \leq \chi_j(x) \leq 1, \ j = 1, 2, \ \chi_1(x) = 1$ if $|x| \leq 1, \ \chi_1(x) = 0$ if $|x| \geq 2$, and $\chi_1^2(x) + \chi_2^2(x) = 1$.
- (ii) Let $\{\chi_j\}_{j=1}^M (M \in \mathbb{N})$ be a family of bounded functions in $C^{\infty}(\mathbb{R}^d)$ such that $\sum_{j=1}^M \chi_j^2(x) = 1$ $\forall x \in \mathbb{R}^d$. Prove the following identity of operators on $\mathcal{S}(\mathbb{R}^d)$:

$$-\Delta = \sum_{j=1}^{M} \left(\chi_j(-\Delta) \chi_j - |\nabla \chi_j|^2 \right)$$

Exercise 22. Consider the Hamiltonian $H = -\Delta + V$ in d dimensions and its ground state energy

$$E_0 = \inf_{\substack{\|\psi\|_2=1\\\psi\in\mathcal{M}}} \left[\int_{\mathbb{R}^d} |\nabla\psi(x)|^2 \,\mathrm{d}x + \int_{\mathbb{R}^d} V(x) |\psi(x)|^2 \,\mathrm{d}x \right]$$

with $\mathcal{M} := H^1(\mathbb{R}^d) \cap \{\psi | \int V_- |\psi|^2 dx < \infty\}$. The potential V is assumed not to vanish almost everywhere.

- (i) Let $d \ge 3$. Assume that $V \in L^{d/2}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$ and $|\{x \in \mathbb{R}^d \text{ s.t. } |V(x)| \ge \varepsilon\}| < \infty$ $\forall \varepsilon > 0$ (no assumption on the sign of V). $|\Omega|$ denotes the Lebesgue measure of the set Ω . Prove that $E_0 \leq 0$.
- (ii) Assume that $V \in L^{1+\varepsilon}(\mathbb{R}^2) + L^{\infty}(\mathbb{R}^2)$ for some $\varepsilon > 0$ and that $V(x) \leq 0$. Prove that $E_0 < 0$. (*Hint:* a convenient trial function that involves logarithm.)

Exercise 23. Consider the following two Hamiltonians in three dimensions and the corresponding ground state energies (\mathbf{R} is a fixed parameter in \mathbb{R}^3):

(i) Prove that

$$E_{\rm GS}^{(\mathbf{R})} \leqslant E_{\rm GS} - \frac{1}{2} e^{-|\mathbf{R}|} \qquad \forall \mathbf{R} \in \mathbb{R}^3$$

(*Hint:* ground state wave-function of the Hydrogen atom as a trial function.)

(ii) Prove that there exists constants c, r > 0 such that

$$E_{\rm GS}^{(\mathbf{R})} \ge E_{\rm GS} - \frac{c}{|\mathbf{R}|}, \qquad |\mathbf{R}| \ge r$$

(*Hint:* Exercise 21(ii).)

Exercise 24. Consider the Schrödinger Hamiltonian $H = -\Delta + V$ in d dimensions. Assume that $V(\lambda x) = \frac{1}{\lambda}V(x) \ \forall \lambda > 0$ and $\forall x \in \mathbb{R}^d$ (this is the case, for instance, for $V(x) = \frac{c}{|x|}$). Let $\psi \in L^2(\mathbb{R}^d)$, $\|\psi\|_2 = 1$, such that $\Delta \psi \in L^2(\mathbb{R}^d)$, $V\psi \in L^2(\mathbb{R}^d)$, and $H\psi = E\psi$ for some $E \in \mathbb{R}$, the equality being in the sense of L^2 functions. Prove that

$$E = -\langle \psi, (-\Delta)\psi \rangle = \frac{1}{2} \langle \psi, V\psi \rangle$$

and that therefore $E \leq 0$.

(*Hint:* introduce $U_{\lambda} : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$, $(U_{\lambda}\phi)(\cdot) := \lambda^{-d/2}\phi(\cdot/\lambda)$ and check that both $U_{\lambda}H\psi$ and $HU_{\lambda}\psi$ belong to $L^2(\mathbb{R}^d)$. Use this to compute the expectation of $(U_{\lambda}H - HU_{\lambda})$ in the state ψ when $\lambda \to 1$.)