TMP Programme Munich – winter term 2012/2013

HOMEWORK ASSIGNMENT 05

Hand-in deadline: Tuesday 27 November 2012 by 6 p.m. in the "MQM" drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 17. Let $d \in \mathbb{N}$. Consider the free Schrödinger evolution operator

$$U_t := e^{it\Delta} : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d), \qquad t \in \mathbb{R},$$

defined in Exercise 3.

- (i) Prove that $(U_t)_{t\in\mathbb{R}}$ is a strongly continuous, not norm continuous, unitary group on $L^2(\mathbb{R}^d)$.
- (ii) Prove that $U_t \xrightarrow{t \to \infty} \mathbb{O}$ weakly in the sense of operators.

Exercise 18. Let \mathcal{A} be a C^* -algebra with identity.

(i) Let $A \in \mathcal{A}$ and let $\sigma(A)$ denote the spectrum of A. Show that $\sigma(A)$ is a compact subset of \mathbb{C} contained in the circle of radius ||A|| centred at the origin.

(*Hint:* expand the function $\mathbb{C} \ni \lambda \mapsto (\lambda - a)^{-1}$ around a fixed λ_0 and around infinity.)

- (ii) Let A be a normal element of \mathcal{A} (i.e., $AA^* = A^*A$). Prove that $||A^n|| = ||A||^n \ \forall n \in \mathbb{N}$.
- (iii) Assume that \mathcal{A} is non-commutative. Prove that the only scalar commutator in \mathcal{A} , i.e., the only possible identity $QP PQ = \alpha \mathbb{1}$ for some $Q, P \in \mathcal{A}$, is the case $\alpha = 0$.

Exercise 19. Let \mathcal{A} be a C^* -algebra with identity.

(i) Let $\pi : \mathcal{A} \to \mathcal{M}_2(\mathbb{C})$ (where $\mathcal{M}_2(\mathbb{C})$ is the 2×2 matrices with complex entries) be a representation of \mathcal{A} on \mathbb{C}^2 such that

$$\left\{ M \in \mathcal{M}_2(\mathbb{C}) \, | \, M\pi(A) = \pi(A)M \; \forall A \in \mathcal{A} \right\} = \left\{ \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \, | \, \lambda \in \mathbb{C} \right\}.$$

Let $\mathbf{x} \in \mathbb{C}^2$, $\mathbf{x} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Prove that $\operatorname{Span} \{ \pi(A) \mathbf{x} \mid A \in \mathcal{A} \}$ is dense in \mathbb{C}^2 .

(ii) Let $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a representation of \mathcal{A} on a Hilbert space \mathcal{H} . ($\mathcal{B}(\mathcal{H})$ is the C^* -algebra of bounded linear operators on a Hilbert space \mathcal{H} equipped with the usual *-algebraic and normed space structure.) Denote scalar product and norm in \mathcal{H} by \langle , \rangle and $\parallel \parallel$ respectively. Given $\psi \in \mathcal{H}$ consider the map $\omega_{\psi} : \mathcal{A} \to \mathbb{C}, \ \omega_{\psi}(\mathcal{A}) := \langle \psi, \pi(\mathcal{A})\psi \rangle$. Prove that ω_{ψ} is a bounded linear map with norm $\Vert \psi \Vert^2$.

Exercise 20.

Let $\mathcal{H} = \mathbb{C}^2$ be the Hilbert space of polarisation states in the x, y plane of a photon flying along the z axis and denote by $|x\rangle := {1 \choose 0}$, resp. $|y\rangle := {0 \choose 1}$, the state of polarisation in the positive x direction, resp. y-direction. Let $\sigma_1 := {0 \choose 1}, \sigma_2 := {0 \choose i}, \sigma_3 := {1 \choose 0}, \sigma_1 := {1 \choose 0}$, and $\sigma_0 := \mathbb{1} = {1 \choose 0}$ (the Pauli matrices on \mathbb{C}^2).

(i) Let $P_{\theta} : \mathcal{H} \to \mathcal{H}, \ \theta \in [0, 2\pi)$, be the orthogonal projection onto the state of polarisation in the direction $(\cos \theta, \sin \theta)$ and let $\sigma(\theta) := 2P_{\theta} - \mathbb{1}$. Prove that

$$\sigma(\theta) = \sigma_3 \cos 2\theta + \sigma_1 \sin 2\theta.$$

and that $\sigma(\theta)$ has only eigenvalues ± 1 .

(ii) Consider an EPR pair of transverse photons flying apart in opposite directions along the z axis in the polarisation state $\Psi_{\text{EPR}} := \frac{1}{\sqrt{2}} (|x\rangle \otimes |x\rangle + |y\rangle \otimes |y\rangle) \in \mathcal{H} \otimes \mathcal{H}$. Prove that

$$\langle \alpha \beta \rangle := \langle \Psi_{\text{EPR}} | \sigma(\alpha) \otimes \sigma(\beta) | \Psi_{\text{EPR}} \rangle = \cos 2(\alpha - \beta).$$

(iii) Recall that Bell's inequality relative to the simultaneous measurement of polarisation in the state Ψ_{EPR} considered in (ii) reads

$$|\langle \alpha\beta\rangle - \langle \alpha\gamma\rangle| \leq 1 - \langle \beta\gamma\rangle.$$

Find angles α , β , and γ such that Bell's inequality is violated.