Mathematical Quantum Mechanics

TMP Programme Munich - winter term 2012/2013

HOMEWORK ASSIGNMENT 05

Hand-in deadline: Tuesday 27 November 2012 by 6 p.m. in the "MQM" drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 17. Let $d \in \mathbb{N}$. Consider the free Schrödinger evolution operator

$$
U_{t}:=e^{\mathrm{i} t \Delta}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right), \quad t \in \mathbb{R}
$$

defined in Exercise 3.
(i) Prove that $\left(U_{t}\right)_{t \in \mathbb{R}}$ is a strongly continuous, not norm continuous, unitary group on $L^{2}\left(\mathbb{R}^{d}\right)$.
(ii) Prove that $U_{t} \xrightarrow{t \rightarrow \infty} \mathbb{O}$ weakly in the sense of operators.

Exercise 18. Let \mathcal{A} be a C^{*}-algebra with identity.
(i) Let $A \in \mathcal{A}$ and let $\sigma(A)$ denote the spectrum of A. Show that $\sigma(A)$ is a compact subset of \mathbb{C} contained in the circle of radius $\|A\|$ centred at the origin.
(Hint: expand the function $\mathbb{C} \ni \lambda \mapsto(\lambda-a)^{-1}$ around a fixed λ_{0} and around infinity.)
(ii) Let A be a normal element of \mathcal{A} (i.e., $A A^{*}=A^{*} A$). Prove that $\left\|A^{n}\right\|=\|A\|^{n} \forall n \in \mathbb{N}$.
(iii) Assume that \mathcal{A} is non-commutative. Prove that the only scalar commutator in \mathcal{A}, i.e., the only possible identity $Q P-P Q=\alpha \mathbb{1}$ for some $Q, P \in \mathcal{A}$, is the case $\alpha=0$.

Exercise 19. Let \mathcal{A} be a C^{*}-algebra with identity.
(i) Let $\pi: \mathcal{A} \rightarrow \mathcal{M}_{2}(\mathbb{C})$ (where $\mathcal{M}_{2}(\mathbb{C})$ is the 2×2 matrices with complex entries) be a representation of \mathcal{A} on \mathbb{C}^{2} such that

$$
\left\{M \in \mathcal{M}_{2}(\mathbb{C}) \mid M \pi(A)=\pi(A) M \quad \forall A \in \mathcal{A}\right\}=\left\{\left.\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \right\rvert\, \lambda \in \mathbb{C}\right\} .
$$

Let $\mathbf{x} \in \mathbb{C}^{2}, \mathbf{x} \neq\binom{ 0}{0}$. Prove that $\operatorname{Span}\{\pi(A) \mathbf{x} \mid A \in \mathcal{A}\}$ is dense in \mathbb{C}^{2}.
(ii) Let $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ be a representation of \mathcal{A} on a Hilbert space \mathcal{H}. ($\mathcal{B}(\mathcal{H})$ is the C^{*}-algebra of bounded linear operators on a Hilbert space \mathcal{H} equipped with the usual $*$-algebraic and normed space structure.) Denote scalar product and norm in \mathcal{H} by \langle,$\rangle and \|\|$ respectively. Given $\psi \in \mathcal{H}$ consider the map $\omega_{\psi}: \mathcal{A} \rightarrow \mathbb{C}, \omega_{\psi}(A):=\langle\psi, \pi(A) \psi\rangle$. Prove that ω_{ψ} is a bounded linear map with norm $\|\psi\|^{2}$.

Exercise 20.

Let $\mathcal{H}=\mathbb{C}^{2}$ be the Hilbert space of polarisation states in the x, y plane of a photon flying along the z axis and denote by $|x\rangle:=\binom{1}{0}$, resp. $|y\rangle:=\binom{0}{1}$, the state of polarisation in the positive x direction, resp. y-direction. Let $\sigma_{1}:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}:=\left(\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right), \sigma_{3}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and $\sigma_{0}:=\mathbb{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ (the Pauli matrices on \mathbb{C}^{2}).
(i) Let $P_{\theta}: \mathcal{H} \rightarrow \mathcal{H}, \theta \in[0,2 \pi)$, be the orthogonal projection onto the state of polarisation in the direction $(\cos \theta, \sin \theta)$ and let $\sigma(\theta):=2 P_{\theta}-\mathbb{1}$. Prove that

$$
\sigma(\theta)=\sigma_{3} \cos 2 \theta+\sigma_{1} \sin 2 \theta
$$

and that $\sigma(\theta)$ has only eigenvalues ± 1.
(ii) Consider an EPR pair of transverse photons flying apart in opposite directions along the z axis in the polarisation state $\Psi_{\text {EPR }}:=\frac{1}{\sqrt{2}}(|x\rangle \otimes|x\rangle+|y\rangle \otimes|y\rangle) \in \mathcal{H} \otimes \mathcal{H}$. Prove that

$$
\langle\alpha \beta\rangle:=\left\langle\Psi_{\mathrm{EPR}}\right| \sigma(\alpha) \otimes \sigma(\beta)\left|\Psi_{\mathrm{EPR}}\right\rangle=\cos 2(\alpha-\beta) .
$$

(iii) Recall that Bell's inequality relative to the simultaneous measurement of polarisation in the state $\Psi_{\text {EPR }}$ considered in (ii) reads

$$
|\langle\alpha \beta\rangle-\langle\alpha \gamma\rangle| \leqslant 1-\langle\beta \gamma\rangle .
$$

Find angles α, β, and γ such that Bell's inequality is violated.

