TMP Programme Munich – winter term 2012/2013

HOMEWORK ASSIGNMENT 04

Hand-in deadline: Tuesday 20 November 2012 by 6 p.m. in the "MQM" drop box.

Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English. **Info:** www.math.lmu.de/~michel/WS12_MQM.html

Exercise 13.

Let $p \in [1, +\infty)$. Let $(f_n)_{n=1}^{\infty}$ be a sequence in $L^p(\mathbb{R})$ and let $f \in L^p(\mathbb{R})$.

- (i) Assume that $\int_{\mathbb{R}} f_n(x)g(x) \, \mathrm{d}x \xrightarrow{n \to \infty} \int_{\mathbb{R}} f(x)g(x) \, \mathrm{d}x \quad \forall g \in C_0^{\infty}(\mathbb{R})$. Is it true that $f_n \rightharpoonup f$ as $n \to \infty$ weakly in $L^p(\mathbb{R})$? Give a proof or a counterexample (applicable to a generic p).
- (iii) Fix now p = 2. Assume that, as $n \to \infty$, $f_n \rightharpoonup f$ weakly in $L^2(\mathbb{R})$ and $||f_n||_2 \to ||f||_2$. Prove that $f_n \to f$ in the L^2 -norm sense.

Exercise 14.

- (i) Let $(f_n)_{n=1}^{\infty}$ be a sequence in $H^1(\mathbb{R})$ and let $f, g \in L^2(\mathbb{R})$ be such that $f_n \rightharpoonup f$ and $f'_n \rightharpoonup g$ weakly in $L^2(\mathbb{R})$ as $n \to \infty$. (Here f'_n is the weak derivative of f_n .) Prove that $f \in H^1(\mathbb{R})$ and that f' = g.
- (ii) Set $f_n(x) := n^{-\frac{1}{4}} x^{\frac{1}{2} + \frac{1}{2n}}$, $n \in \mathbb{N}$, $x \in [0, 1]$. In which of the following senses does the sequence $(f_n)_{n=1}^{\infty}$ converge and, if it does, what is the limit?
 - In norm in $L^{2}[0, 1]$.
 - In norm in $H^1(0, 1)$.
 - Weakly in $L^{2}[0, 1]$.
 - Weakly in $H^1(0, 1)$.

Exercise 15.

Consider the following functionals acting on the given Banach space:

$$\begin{split} \Phi_1[f] &:= \int_0^{2\pi} |f(x)|^4 dx - i \int_0^{2\pi} |f(x)|^3 dx & \text{on the space } L^6[0, 2\pi] \\ \Phi_2[f] &:= \int_0^{2\pi} f(x) dx & \text{on the space } L^p[0, 2\pi], \ p \in [1, +\infty), \\ \Phi_3[f] &:= \left(\int_{-\infty}^{+\infty} |f(x)|^2 dx \right)^{1/2} & \text{on the space } L^2(\mathbb{R}), \\ \Phi_4[f] &:= \begin{cases} 1 & \text{if } \|f\|_p = 1 \\ 0 & \text{otherwise} \end{cases} & \text{on the space } L^p(\mathbb{R}), \ p \in [1, +\infty). \end{split}$$

- (i) Decide in each case if the functional is norm-continuous in the given space.
- (ii) Decide in each case if the functional is weakly continuous in the given space.

Exercise 16.

Let $d \in \mathbb{N}$.

(i) Take $\psi \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$. Consider the free Schrödinger evolution $e^{it\Delta}\psi$ of ψ (discussed in Exercise 3.(i)). Prove that

$$||e^{it\Delta}\psi||_2 = ||\psi||_2$$
 and $||e^{it\Delta}\psi||_{\infty} \leq \frac{1}{(4\pi t)^{d/2}} ||\psi||_1 \quad \forall t > 0.$

(ii) Prove that for every t > 0 the operator $e^{it\Delta}$ extends uniquely to a bounded linear operator $L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d), \ p \in [1, 2], \ p^{-1} + q^{-1} = 1$, with

$$\|e^{\mathrm{i}t\Delta}\psi\|_q \leqslant \frac{1}{(4\pi t)^{d(\frac{1}{2}-\frac{1}{q})}} \|\psi\|_p \qquad \forall \psi \in L^p(\mathbb{R}^d).$$

(*Hint:* use the Riesz-Thorin interpolation theorem stated in class.)