Mathematical Quantum Mechanics

TMP Programme Munich - winter term 2012/2013

HOMEWORK ASSIGNMENT 04
Hand-in deadline: Tuesday 20 November 2012 by 6 p.m. in the "MQM" drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 13.

Let $p \in[1,+\infty)$. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in $L^{p}(\mathbb{R})$ and let $f \in L^{p}(\mathbb{R})$.
(i) Assume that $\int_{\mathbb{R}} f_{n}(x) g(x) \mathrm{d} x \xrightarrow{n \rightarrow \infty} \int_{\mathbb{R}} f(x) g(x) \mathrm{d} x \quad \forall g \in C_{0}^{\infty}(\mathbb{R})$. Is it true that $f_{n} \rightharpoonup f$ as $n \rightarrow \infty$ weakly in $L^{p}(\mathbb{R})$? Give a proof or a counterexample (applicable to a generic p).
(iii) Fix now $p=2$. Assume that, as $n \rightarrow \infty, f_{n} \rightharpoonup f$ weakly in $L^{2}(\mathbb{R})$ and $\left\|f_{n}\right\|_{2} \rightarrow\|f\|_{2}$. Prove that $f_{n} \rightarrow f$ in the L^{2}-norm sense.

Exercise 14.

(i) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in $H^{1}(\mathbb{R})$ and let $f, g \in L^{2}(\mathbb{R})$ be such that $f_{n} \rightharpoonup f$ and $f_{n}^{\prime} \rightharpoonup g$ weakly in $L^{2}(\mathbb{R})$ as $n \rightarrow \infty$. (Here f_{n}^{\prime} is the weak derivative of f_{n}.) Prove that $f \in H^{1}(\mathbb{R})$ and that $f^{\prime}=g$.
(ii) Set $f_{n}(x):=n^{-\frac{1}{4}} x^{\frac{1}{2}+\frac{1}{2 n}}, n \in \mathbb{N}, x \in[0,1]$. In which of the following senses does the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converge and, if it does, what is the limit?

- In norm in $L^{2}[0,1]$.
- In norm in $H^{1}(0,1)$.
- Weakly in $L^{2}[0,1]$.
- Weakly in $H^{1}(0,1)$.

Exercise 15.

Consider the following functionals acting on the given Banach space:

$$
\begin{aligned}
& \Phi_{1}[f]:=\int_{0}^{2 \pi}|f(x)|^{4} \mathrm{~d} x-\mathrm{i} \int_{0}^{2 \pi}|f(x)|^{3} \mathrm{~d} x \quad \text { on the space } L^{6}[0,2 \pi], \\
& \Phi_{2}[f]:=\int_{0}^{2 \pi} f(x) \mathrm{d} x \quad \text { on the space } L^{p}[0,2 \pi], p \in[1,+\infty), \\
& \Phi_{3}[f]:=\left(\int_{-\infty}^{+\infty}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2} \quad \text { on the space } L^{2}(\mathbb{R}), \\
& \Phi_{4}[f]:=\left\{\begin{array}{ll}
1 & \text { if }\|f\|_{p}=1 \\
0 & \text { otherwise }
\end{array} \quad \text { on the space } L^{p}(\mathbb{R}), p \in[1,+\infty) .\right.
\end{aligned}
$$

(i) Decide in each case if the functional is norm-continuous in the given space.
(ii) Decide in each case if the functional is weakly continuous in the given space.

Exercise 16.

Let $d \in \mathbb{N}$.
(i) Take $\psi \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right)$. Consider the free Schrödinger evolution $e^{i t \Delta} \psi$ of ψ (discussed in Exercise 3.(i)). Prove that

$$
\left\|e^{i t \Delta} \psi\right\|_{2}=\|\psi\|_{2} \quad \text { and } \quad\left\|e^{i t \Delta} \psi\right\|_{\infty} \leqslant \frac{1}{(4 \pi t)^{d / 2}}\|\psi\|_{1} \quad \forall t>0
$$

(ii) Prove that for every $t>0$ the operator $e^{i t \Delta}$ extends uniquely to a bounded linear operator $L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right), p \in[1,2], p^{-1}+q^{-1}=1$, with

$$
\left\|e^{\mathrm{it} \Delta} \psi\right\|_{q} \leqslant \frac{1}{(4 \pi t)^{d\left(\frac{1}{2}-\frac{1}{q}\right)}}\|\psi\|_{p} \quad \forall \psi \in L^{p}\left(\mathbb{R}^{d}\right)
$$

(Hint: use the Riesz-Thorin interpolation theorem stated in class.)

