Mathematical Quantum Mechanics

TMP Programme Munich – winter term 2012/2013

HOMEWORK ASSIGNMENT 03

Hand-in deadline: Tuesday 13 November 2012 by 6 p.m. in the "MQM" drop box.

Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.

Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 9. Consider the distribution δ in $\mathcal{D}'(\mathbb{R})$ centred at zero. The distribution $\frac{\mathrm{d}^k}{\mathrm{d}x^k}\delta$ is also denoted by $\delta^{(k)}$. For k=1,2,3 the notation δ' , δ'' , δ''' (respectively) is also used. $\delta^{(0)}=\delta$.

(i) Let $f \in C^{\infty}(\mathbb{R})$. Prove the following identity in $\mathcal{D}'(\mathbb{R})$:

$$f\delta''' = -f'''(0)\delta + 3f''(0)\delta' - 3f'(0)\delta'' + f(0)\delta'''.$$

(ii) Show that the general solution to the distributional equation

$$x^2T = 0 (T \in \mathcal{D}'(\mathbb{R}))$$

is
$$T = c_0 \delta + c_1 \delta'$$
, $c_0, c_1 \in \mathbb{C}$.

(iii) Determine all solutions $T \in \mathcal{D}'(\mathbb{R})$ to the distributional differential equation

$$T' = \delta_1 - \delta_{-1} + x^{2012} \operatorname{sgn}(x) \mathbb{1}_{\{|x| \ge 1\}}$$

where δ_a is the delta distribution at the point a and $\operatorname{sgn}(x)$ is the sign of x.

Exercise 10. Let $d \in \mathbb{N}$, $p, q \in \mathbb{R}^d$, and $\theta > 0$. Consider the coherent state (see Ex. 1.(ii))

$$\psi_{q,p,\theta}(x) := \frac{1}{(\theta\sqrt{\pi})^{d/2}} e^{ipx} e^{-\frac{|x-q|^2}{2\theta^2}}, \qquad x \in \mathbb{R}^d.$$

- (i) Let $t \in \mathbb{R}$. Compute $e^{it\Delta}\psi_{q,p,\theta}$ explicitly using the kernel of the free Schrödinger evolution determined in Ex. 3.(i).
- (ii) Prove that, apart from an irrelevant (possibly x-dependent) phase factor, $e^{it\Delta}\psi_{q,p,\theta}$ is still a coherent state of the form $\psi_{q(t),p(t),\theta(t)}(x)$ where $q(t)=q+2pt,\ p(t)=p,$ and $\theta(t)=\sqrt{\theta^2+4t^2/\theta^2}$.

Exercise 11. Let m > 0. Consider the measurable functions G and G_m on \mathbb{R}^3 defined by

$$G(x) := \frac{1}{4\pi|x|}, \qquad G_m(x) := \left(\frac{1}{m^2 + (2\pi \cdot)^2}\right)^{\vee}(x)$$

 $(f^{\vee} \text{ denotes the inverse Fourier transform of } f).$

- (i) Prove that $\frac{G_m(x)}{G(x)} \xrightarrow{|x| \to 0} 1$.
- (ii) Prove that $-\frac{\ln G_m(x)}{m|x|} \xrightarrow{|x|\to\infty} 1$.
- (iii) Prove that $(-\Delta + m^2)G_m = \delta$ as an identity of distributions in $\mathcal{D}'(\mathbb{R}^3)$.

Exercise 12.

- (i) Prove that for every $\varphi \in C_0^{\infty}(\mathbb{R})$ the limit $\lim_{\varepsilon \downarrow 0} \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{1}{x} \varphi(x) dx$ exists and is finite.
- (ii) Show that the linear map $PV(\frac{1}{r}): C_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ defined by

$$\operatorname{PV}\left(\frac{1}{x}\right)(\varphi) := \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{1}{x} \varphi(x) \, \mathrm{d}x$$

is continuous in the topology of the space of test functions $\mathcal{D}(\mathbb{R})$, and therefore is a distribution.

(iii) Prove the following identities in $\mathcal{D}'(\mathbb{R})$:

$$\frac{1}{x \pm i0} := \lim_{\epsilon \downarrow 0} \frac{1}{x \pm i\epsilon} = PV\left(\frac{1}{x}\right) \mp i\pi \delta_0$$

where δ_0 is the delta distribution centred at the origin.