Mathematical Quantum Mechanics

TMP Programme Munich - winter term 2012/2013

HOMEWORK ASSIGNMENT 02

Hand-in deadline: Tuesday 6 November 2012 by 6 p.m. in the "MQM" drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/WS12_MQM.html

Exercise 5.

(i) Prove for all $\psi \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ that

$$
\begin{aligned}
\pi \int_{\mathbb{R}^{3}} \frac{1}{|x|} \psi(x) \mathrm{d} x & =\int_{\mathbb{R}^{3}} \frac{1}{|k|^{2}} \widehat{\psi}(k) \mathrm{d} k, \\
\int_{\mathbb{R}^{3}} \frac{1}{|x|^{2}} \psi(x) \mathrm{d} x & =\pi \int_{\mathbb{R}^{3}} \frac{1}{|k|} \widehat{\psi}(k) \mathrm{d} k .
\end{aligned}
$$

(Hint: it is enough you to prove only one of the two identities above, because...)
(ii) Consider the three-dimensional hydrogenic Hamiltonian $H^{(Z)}=-\Delta-\frac{Z}{|x|}(Z>0)$. Recall from class that its ground state energy is

$$
\mathcal{E}_{\mathrm{GS}}(Z):=\inf _{\substack{\psi \in \mathcal{M} \\\|\psi\|_{2}=1}}\left\langle\psi, H^{(Z)} \psi\right\rangle=-\frac{Z^{2}}{4}
$$

where $\mathcal{M}=\left\{\psi\left|\psi, \nabla \psi,|\cdot|^{-1 / 2} \psi \in L^{2}\left(\mathbb{R}^{3}\right)\right\}\right.$. Estimate $\mathcal{E}_{\mathrm{GS}}(Z)$ from above by means of the trial functions

$$
\psi_{q, p, \theta}(x):=\frac{1}{(\theta \sqrt{\pi})^{3 / 2}} e^{i p x} e^{-\frac{|x-q|^{2}}{2 \theta^{2}}}, \quad x \in \mathbb{R}^{3},
$$

$q, p \in \mathbb{R}^{3}, \theta>0$ (i.e., the "coherent states" determined in Exercise 1.(ii)) and prove that

$$
\inf _{q, p \in \mathbb{R}^{3}, \theta>0}\left\langle\psi_{q, p, \theta}, H^{(Z)} \psi_{q, p, \theta}\right\rangle=-\frac{2 Z^{2}}{3 \pi} .
$$

Exercise 6. Decide which of the following sequences in $L_{\text {loc }}^{1}(\mathbb{R})$ converge in $\mathcal{D}^{\prime}(\mathbb{R})$ and compute the limit when it exists.
(i) $\left\{f_{n}\right\}_{n=1}^{\infty}$ with $f_{n}(x):=\frac{n}{\pi\left(1+n^{2} x^{2}\right)}$
(ii) $\left\{g_{n}\right\}_{n=1}^{\infty}$ with $g_{n}(x):=\frac{\sin n x}{\pi x}$
(iii) $\left\{h_{n}\right\}_{n=1}^{\infty}$ with $h_{n}(x):=n^{2} x \cos (n x)$
(iv) $\left\{k_{n}\right\}_{n=1}^{\infty}$ with $k_{n}(x):=\left(\frac{n^{2}}{1+n^{2}(n x-1)^{2}}\right)^{2}$.

Exercise 7. Let $d \in \mathbb{N}$.
(i) Let $\psi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a measurable function such that

$$
|\psi(x)| \leqslant \frac{C}{(1+|x|)^{\alpha}} \quad \forall x \in \mathbb{R}^{d}
$$

for some constants $C>0, \alpha>d$. Prove that $\widehat{\psi} \in C^{k}\left(\mathbb{R}^{d}\right)$ for every integer $k<\alpha-d$.
(ii) Let $\psi \in C_{0}^{\infty}(\mathbb{R}), \psi \neq 0$. Prove that $\widehat{\psi} \notin C_{0}^{\infty}(\mathbb{R})$.
(Hint: go for a contradiction and extend $\widehat{\psi}(k)$ to the whole \mathbb{C}-plane.)

Exercise 8. Let $\psi \in \mathcal{S}\left(\mathbb{R}^{d}\right), d \in \mathbb{N}, d \geqslant 3$, and for every $x \equiv\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ define

$$
h_{\varepsilon}(x):=\left(\frac{x_{1}}{\varepsilon+|x|^{2}}|\psi(x)|^{2}, \ldots, \frac{x_{d}}{\varepsilon+|x|^{2}}|\psi(x)|^{2}\right), \quad \varepsilon>0 .
$$

Apply the divergence theorem from Calculus to the vector field h_{ε} (in particular: show that such a theorem is applicable) in a convenient way so to prove Hardy's inequality

$$
\int_{\mathbb{R}^{d}} \frac{|\psi(x)|^{2}}{|x|^{2}} \mathrm{~d} x \leqslant\left(\frac{2}{d-2}\right)^{2} \int_{\mathbb{R}^{d}}|\nabla \psi(x)|^{2} \mathrm{~d} x
$$

Optional (not needed for the mark): modify the definition of h_{ε} so to prove, along the same line,

$$
\int_{\mathbb{R}^{d}} \frac{|\psi(x)|^{p}}{|x|^{p}} \mathrm{~d} x \leqslant\left(\frac{p}{d-p}\right)^{p} \int_{\mathbb{R}^{d}}|\nabla \psi(x)|^{p} \mathrm{~d} x, \quad 1<p<d
$$

