Mathematical Statistical Physics - Final exam, 11.7.2014
 Mathematische Statistische Physik - Endklausur, 11.7.2014

Name:/Name: \qquad Pseudonym:/Pseudonym: \qquad
Matriculation number:/ Matrikelnr. \qquad Semester:/Fachsemester: \qquad
Degree course:/Studiengang: \qquad Lehramt Gymnasium (modularisiert) Lehramt Gymnasium (nicht modul.) \square $\begin{array}{llllll}\text { Major:/Hauptfach: } \square \text { Mathematik } & \square \text { Wirtschaftsm. } & \square \text { Informatik } & \square \text { Physik } & \square \text { Statistik } & \square \\ \text { Minor:/Nebenfach: } \square \text { Mathematik } & \square \text { Wirtschaftsm. } & \square \text { Informatik } & \square \text { Physik } & \square \text { Statistik } & \square \square\end{array}$ $\begin{array}{llllll}\text { Major:/Hauptfach: } \square \text { Mathematik } & \square \text { Wirtschaftsm. } & \square \text { Informatik } & \square \text { Physik } & \square \text { Statistik } & \square \\ \text { Minor:/Nebenfach: } \square \text { Mathematik } & \square \text { Wirtschaftsm. } & \square \text { Informatik } & \square \text { Physik } & \square \text { Statistik } & \square \square\end{array}$ $\begin{array}{llllll}\text { Major:/Hauptfach: } \square \text { Mathematik } & \square \text { Wirtschaftsm. } & \square \text { Informatik } & \square \text { Physik } & \square \text { Statistik } & \square \\ \text { Minor:/Nebenfach: } \square \text { Mathematik } & \square \text { Wirtschaftsm. } & \square \text { Informatik } & \square \text { Physik } & \square \text { Statistik } & \square\end{array}$ $\begin{array}{llllll}\text { Major:/Hauptfach: } \square \text { Mathematik } & \square \text { Wirtschaftsm. } & \square \text { Informatik } & \square \text { Physik } & \square \text { Statistik } & \square \\ \text { Minor:/Nebenfach: } \square \text { Mathematik } & \square \text { Wirtschaftsm. } & \square \text { Informatik } & \square \text { Physik } & \square \text { Statistik } & \square\end{array}$

Credits needed for:/Anrechnung der Credit Points für das: \square Hauptfach \square Nebenfach
Extra solution sheets submitted:/Zusätzlich abgegebene Lösungsblätter: \quad Yes \square No

problem	1	2	3	4	5	6	\sum
total marks	10	10	10	10	10	10	60
scored marks							

FINAL
 MARK

INSTRUCTIONS:

- This booklet is made of sixteen pages, including the cover, numbered from 1 to 16 . The test consists of six problems. Each problem is worth 10 marks. You are free to work on any problem and to collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-size "cheat sheet" (Spickzettel).
- Raise up your hand to request extra sheets or scratch paper. You are not allowed to use your own paper.
- Results discussed in the lectures can be cited and used without justification. Unless explicitly stated, you cannot cite without proof results from the homework.
- Work individually. Write with legible handwriting. You may hand in your solution in German or in English. Put your name on every sheet you hand in.
- You have 165 minutes.

Fill in the form here below only if you need the certificate (Schein).

Der / Die Studierende der \qquad
Herr / Frau \qquad aus \qquad geboren am \qquad in n hat im SoSe -Halbjahr 2014
meine Übungen zur Mathematischen Statistischen Physik
mit besucht.
Er / Sie hat
schriftliche Arbeiten geliefert, die mit ihm / ihr besprochen wurden.

Name

PROBLEM 1. (10 marks)

Consider

- the C^{*}-algebra $\mathcal{A}=\mathcal{M}(n \times n, \mathbb{C}), n \in \mathbb{N}$,
- a Hamiltonian $H=H^{*} \in \mathcal{A}$,
- the one-parameter group $\left\{\tau^{t} \mid t \in \mathbb{R}\right\}$ of $*$-automorphisms $A \mapsto \tau^{t}(A):=e^{\mathrm{i} t H} A e^{-\mathrm{i} t H}$ of \mathcal{A},
- a state ω on \mathcal{A},
- $\beta \in \mathbb{R}$.

Denote by $\omega_{\beta H}$ the Gibbs state at inverse temperature β. Prove the following:

1. If $\omega=\omega_{\beta H}$, then ω is a $\left(\tau^{t}, \beta\right)$-KMS state.
2. If ω is a $\left(\tau^{t}, \beta\right)$-KMS state, then $\omega=\omega_{\beta H}$.

SOLUTION:

SOLUTION TO PROBLEM 1 (CONTINUATION):

Name

PROBLEM 2. (10 marks)

Consider the C^{*}-algebra $\mathcal{A}=\mathcal{M}(2 \times 2, \mathbb{C})$ and the state ω_{μ} represented by the density matrix

$$
\rho_{\mu}=\left(\begin{array}{cc}
\mu & 0 \\
0 & 1-\mu
\end{array}\right), \quad \mu \in\left[0, \frac{1}{2}\right] .
$$

Find, for each μ, an explicit GNS representation $\left(\mathcal{H}_{\mu}, \pi_{\mu}, \Omega_{\mu}\right)$ of \mathcal{A} associated to the state ω_{μ}.

SOLUTION:

SOLUTION TO PROBLEM 2 (CONTINUATION):

Name

PROBLEM 3. (10 marks)

Consider a one-dimensional quantum spin chain. For each $x \in \mathbb{Z}$, let $\mathcal{H}_{x} \simeq \mathbb{C}^{n}$ for a fixed $n \geqslant 2$, and let $\mathcal{A}_{\mathbb{Z}}$ be the usual quasi-local algebra built upon $\mathcal{A}_{\{x\}}=\mathcal{B}\left(\mathcal{H}_{x}\right)$. Let $\left(\Lambda_{m}\right)_{m \in \mathbb{N}}$ be the sequence $\Lambda_{m}=[-m, m] \cap \mathbb{Z}$. Consider:

- unitary elements $U_{x} \in \mathcal{A}_{\{x\}}$ and the associated map

$$
\alpha_{\Lambda}(A):=\left(\otimes_{x \in \Lambda} U_{x}^{*}\right) A\left(\otimes_{y \in \Lambda} U_{y}\right), \quad A \in \mathcal{A}_{\Lambda} ;
$$

- the local Hamiltonian H_{Λ}, given by a two-body interaction

$$
H_{\Lambda}=\sum_{x, y \in \Lambda} J(x, y) \Phi_{x, y}
$$

where $\Phi_{x, y} \in \mathcal{A}_{\{x\} \cup\{y\}} ;$ we shall assume that the associated dynamics τ^{t} exists on $\mathcal{A}_{\mathbb{Z}}$.

1. Prove that there exists an automorphism α of $\mathcal{A}_{\mathbb{Z}}$ such that

$$
\lim _{m \rightarrow \infty} \alpha_{\Lambda_{m}}(A)=\alpha(A), \quad A \in \mathcal{A}_{\mathrm{loc}} .
$$

2. Assume that $\left\|\Phi_{x, y}\right\| \leqslant 1$ and that there exists $C<\infty$ such that

$$
\sup _{x \in \mathbb{Z}} \sum_{y \in \mathbb{Z}}|J(x, y)||x-y|=C .
$$

Assume moreover that $\alpha\left(\Phi_{x, y}\right)=\Phi_{x, y}$ for all $(x, y) \in \mathbb{Z} \times \mathbb{Z}$. Prove that if ω is a $\left(\tau^{t}, \beta\right)$ KMS state for a $\beta \in(0, \infty)$, then $\omega \circ \alpha=\omega$.

SOLUTION:

SOLUTION TO PROBLEM 3 (CONTINUATION):

Name

PROBLEM 4. (10 marks)

For this problem, you may assume results proved in the homework.
Let $M:=\{1,2, \ldots, m\}$. Consider the following generalisation of the classical 1D Ising Model discussed in class. The model consists of $N+1$ sites where at each site i the configuration is given by $S_{i} \in M$. A configuration of the chain is given by $S:\{1, \ldots, N+1\} \rightarrow M$. The energy functional is given by

$$
H_{N}(S):=\sum_{i=1}^{N} h\left(S_{i}, S_{i+1}\right)
$$

for some function $h: M \times M \rightarrow \mathbb{R}$. We consider the Dirichlet boundary condition obtained by fixing the values of S_{1} and S_{N+1}. For any $\left(s_{L}, s_{R}\right) \in M \times M$, denote $C\left(s_{L}, s_{R}\right):=\left\{S \mid S_{1}=\right.$ $\left.s_{L}, S_{N+1}=s_{R}\right\}$. The specific free energy is given by

$$
f_{N}\left(\beta, s_{L}, s_{R}\right)=\frac{\log Z_{N}\left(\beta, s_{L}, s_{R}\right)}{N+1}, \quad Z_{N}\left(\beta, s_{L}, s_{R}\right)=\sum_{S \in C\left(s_{L}, s_{R}\right)} e^{-\beta H_{N}(S)}
$$

1. Prove that the thermodynamic limit

$$
f\left(\beta, s_{L}, s_{R}\right)=\lim _{N \rightarrow \infty} f_{N}\left(\beta, s_{L}, s_{R}\right)
$$

exists.
2. Prove that it is independent of the boundary condition $\left(s_{L}, s_{R}\right)$.
(Hint: Introduce a transfer matrix to represent $Z_{N}\left(\beta, s_{L}, s_{R}\right)=\left\langle v_{L}, T_{\beta}^{N} v_{R}\right\rangle$ and use the specific properties of its entries.)

SOLUTION:

SOLUTION TO PROBLEM 4 (CONTINUATION):

Name

PROBLEM 5. (10 marks)

Let \mathcal{A} be a C^{*}-algebra with unit, $\left\{\tau^{t} \mid t \in \mathbb{R}\right\}$ be a one-parameter strongly continuous group of $*$-automorphisms of \mathcal{A}, and $\beta \in(0, \infty)$. Assume that, for each $n \in \mathbb{N},\left\{\tau_{n}^{t} \mid t \in \mathbb{R}\right\}$ is a oneparameter strongly continuous group of $*$-automorphisms of \mathcal{A} such that $\left\|\tau_{n}^{t}(A)-\tau^{t}(A)\right\| \xrightarrow{n \rightarrow \infty}$ $0 \forall A \in \mathcal{A}$ and $\forall t \in \mathbb{R}$, and that $\left(\omega_{n}\right)_{n=1}^{\infty}$ is a sequence of $\left(\tau_{n}^{t}, \beta\right)$-KMS states on \mathcal{A}.

1. Argue that there exists a limiting state ω on \mathcal{A} (a keyword is sufficient here).
2. Prove that ω is a $\left(\tau^{t}, \beta\right)$-KMS state.
(Hint: You may use the following result: Let δ, respectively δ_{n}, be the generators of τ^{t}, respectively τ_{n}^{t}. For each $A \in D(\delta)$, there is a sequence $\left(A_{n}\right)_{n=0}^{\infty}$ such that $A_{n} \in D\left(\delta_{n}\right)$ and

$$
A_{n} \longrightarrow A, \quad \delta_{n}\left(A_{n}\right) \longrightarrow \delta(A)
$$

as $n \rightarrow \infty$.)

SOLUTION:

SOLUTION TO PROBLEM 5 (CONTINUATION):

PROBLEM 6. (10 marks) - SHORT QUESTIONS

Answer to each question with a YES or a NO. Marking scheme: 1 mark for each correct answer, 0 marks for each unanswered question, -1 mark for each wrong answer.
6.1 Consider the quasi-free state ω_{ρ} on the Weyl algebra with one-particle Hilbert space \mathcal{H} associated to the operator $\rho \geqslant 0$ on \mathcal{H}. Let the dynamics be given by $\tau^{t}(W(f))=W\left(e^{\mathrm{i} t H} f\right)$, and assume that $\rho=e^{-\mathrm{i} t H} \rho e^{\mathrm{i} t H}$. Is the dynamics unitarily implementable in the GNS representation associated to ω_{ρ} ?
\square YES \square NO
6.2 Let $H_{\Lambda}=\sum_{(x, y) \in \mathcal{E}_{\Lambda}}\left(\lambda\left(\sigma_{x}^{1} \sigma_{y}^{1}+\sigma_{x}^{2} \sigma_{y}^{2}\right)+\sigma_{x}^{3} \sigma_{y}^{3}\right),|\lambda|<1$ for $\Lambda \subset \mathbb{Z}^{2}$, where σ^{*} are the Pauli matrices. Consider the symmetry $\sigma_{x}^{1} \mapsto \sigma_{x}^{1}, \sigma_{x}^{2} \mapsto \sigma_{x}^{2}, \sigma_{x}^{3} \mapsto-\sigma_{x}^{3}$ for all $x \in \mathbb{Z}^{2}$. Does Mermin-Wagner's theorem show the absence of symmetry breaking in this case?

6.3 Does an ideal Bose gas with relativistic energy-momentum dispersion relation $\epsilon(p)=|p|$, i.e. $h=\sqrt{|-\mathrm{i} \nabla|}$ on $L^{2}\left(\mathbb{R}^{2}\right)$, exhibit Bose-Einstein condensation?
6.4 Consider a C^{*}-dynamical system $\left(\mathcal{A}, \tau^{t}\right)$, a $\left(\tau^{t}, \beta\right)$-KMS state ω with $\beta \in(0, \infty)$ on \mathcal{A}, and a *-automorphism α on \mathcal{A}. Is it true that, if the dynamics τ^{t} is α-invariant, so is the state ω ?
\square YES \square NO
6.5 On the C^{*}-algebra $\mathcal{A}=\mathcal{M}(n \times n, \mathbb{C})$, consider a Hamiltonian $H=H^{*}$ and a state ω_{ρ} given by the density matrix ρ. Assume that $\omega_{\rho}\left(X^{*}[H, X]\right) \geqslant-2014$ for all $X \in \mathcal{A}$. Do ρ and H commute?
6.6 Let \mathcal{A} be a C^{*}-algebra and π_{1}, π_{2} be unitarily equivalent representations. Does this imply that the spectrum of $\pi_{1}(A)$ is equal to the spectrum of $\pi_{2}(A)$ for all $A \in \mathcal{A}$?
\square YES \square NO
6.7 Let $\mathcal{A}=C^{0}([0,1])$ and $\mathcal{A} \ni f: x \mapsto \exp (x)$. Does 2014 belong to the spectrum of f ? $\square \mathrm{YES} \square \mathrm{NO}$
6.8 Consider the family $\mathcal{N}(\mathcal{A}):=\left\{A \in \mathcal{A} \mid A A^{*}=A^{*} A\right\}$ of all normal elements of a C^{*}-algebra \mathcal{A}. Is $\mathcal{N}(\mathcal{A})$ necessarily a $*$-subalgebra of \mathcal{A} ?
$\square \mathrm{YES} \square \mathrm{NO}$
6.9 Consider a quantum spin system on $\Gamma=\mathbb{Z}^{2}$. For boxes $\Lambda_{L}=[-L \ldots L]^{2}$ let f_{β}^{L} be the Fourier transform of $\omega_{\beta}^{L}\left(S_{0}^{2} S_{x}^{2}\right)$, where ω_{β}^{L} is the Gibbs state of the system on Λ_{L}. Assume that f_{β}^{L} is real-valued and

$$
f_{\beta}^{L}(k) \leqslant \frac{C}{L^{2} \beta}|k|^{-1 / 2}
$$

for a positive constant C. Is it true that the model exhibits long-range order in the sense that $\lim \inf _{L \rightarrow \infty} L^{-2} \sum_{x \in \mathbb{Z}^{2}} \omega_{\beta}^{L}\left(S_{0}^{2} S_{x}^{2}\right)>0$?
$\square \mathrm{YES} \square \mathrm{NO}$
6.10 On a Hilbert space \mathcal{H}, assume that the time-dependent Hamiltonian $H(t)=H(t)^{*}$ is such that $H(0)=H(T)$. Let ω be an arbitrary state of the system. Can the energy of the system at $t=T$ be strictly smaller than at $t=0$?

