Mathematical Statistical Physics

TMP Programme Munich - spring term 2014

HOMEWORK ASSIGNMENT - WEEK 11

Hand-in deadline: Thursday 26 June by 12 p.m. in the "MSP" drop box.
Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 30. (The lattice BCS model.)
Consider, among the class of quantum spin systems studied in Exercise 29 in the mean field regime, the special case of a one-dimensional spin- $\frac{1}{2}$ model where the Hamiltonian H_{Λ} is given, with respect to the notation of Exercise 29, by

$$
d=1, \quad s=\frac{1}{2}, \quad A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad B=-\lambda\left(C^{*} \otimes C+C \otimes C^{*}\right), \quad C=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \lambda \geqslant 0 .
$$

(i) Prove that a generic 2×2 density matrix ρ can be parametrised as follows:

$$
\rho=\left(\begin{array}{cc}
\frac{1}{2}+r & \mu \\
\bar{\mu} & \frac{1}{2}-r
\end{array}\right), \quad r \in \mathbb{R}, \quad \mu \in \mathbb{C}, \quad r^{2}+|\mu|^{2} \leqslant \frac{1}{4} .
$$

(ii) Compute the reduced Hamiltonian H_{ρ} of the model relative to a density matrix ρ parametrised as in (i).
(iii) Compute $e^{-\beta H_{\rho}}, \beta>0$.
(iv) Write and solve the gap equation (see Exercise 29(ii)) for this model. Plot the parameter r and $|\mu|$ of the solutions as a function of β.
(v) Which of the solutions found in (iv) actually maximises f_{β} ?

Exercise 31. (Application of RG: a quantum flute - or a bosonic string)
Consider a cigar-shaped tube of length π and assume that the pressure inside it can be modelled by a function $p(t, x)$ of the time t and of the coordinate x along the tube. Consider the classical Hamiltonian

$$
H=\int_{0}^{\pi} \mathrm{d} x\left(\left(\frac{\partial p}{\partial t}\right)^{2}+\left(\frac{\partial p}{\partial x}\right)^{2}\right) .
$$

(i) Assume Dirichlet boundary conditions $p(t, 0)=p(t, \pi)=0$. Re-write H in terms of the Fourier transform of $p(t, x)$ with respect to x and prove that H takes this way the form of an infinite sum of classical harmonic oscillators of mass $\frac{1}{2}$,

$$
H=\sum_{k=1}^{\infty} h_{k}, \quad h_{k}:=\left(\frac{\mathrm{d} p_{k}}{\mathrm{~d} t}\right)^{2}+\omega_{k} p_{k}^{2},
$$

of which you have to specify the frequency ω_{k}.
(ii) Consider the quantisation of the Hamiltonian H obtained in (i), consisting of the replacement of each mode p_{k} with the operator of multiplication times x_{k} and correspondingly of $\frac{\mathrm{d} p_{k}}{\mathrm{~d} t}$ with the differential operator $-\mathrm{i} \frac{\partial}{\partial x_{k}}$. Let E_{k} be the ground state energy of the harmonic oscillator h_{k}. Prove that $\sum_{k=1}^{\infty} E_{k}=+\infty$.
(iii) To cure the divergence found in (ii), assume that H can be regularised to some $H_{\text {reg }}$ in such a way that each harmonic oscillator h_{k} has a ground state damped by a factor $e^{-a / \lambda_{k}}$, where a is a reference distance (say, the typical inter-atomic distance) and λ_{k} is the wave length of the mode k. Correspondingly, consider $\widetilde{E}:=\sum_{k=1}^{\infty} E_{k} e^{-a / \lambda_{k}}$. Prove the following asymptotics

$$
\widetilde{E}=\frac{1}{a^{2}}-\frac{1}{12}+O(a) \quad \text { as } a \rightarrow 0 .
$$

(iv) An immediate consequence of (iii) is that re-normalising $H_{\text {reg }}$ by

$$
H_{\mathrm{reg}} \mapsto H^{\prime}:=H_{\mathrm{reg}}-\int_{0}^{\pi} \mathrm{d} x \frac{1}{a^{2}},
$$

namely adding a contribution which is p-independent (thus, not affecting the equation of motion) and preserves locality, the ground state energy of H^{\prime} stays finite as $a \rightarrow 0$. Discuss the value of this ground state in relation to the quantity $\zeta(-1)$, where ζ is the Riemann zeta function.

Exercise 32. For each of the 10 questions below answer YES or NO and provide a brief explanation.
32.1 Is there a unique KMS state for an infinite block of iron at room temperature?

\square YES \square NO

32.2 Consider the C^{*}-algebra $\mathcal{A}=\mathcal{L}\left(L^{2}(\mathbb{R})\right)$ and the time evolution $\tau_{t}(A)=e^{\mathrm{it} H} A e^{-\mathrm{i} t H}, t \in \mathbb{R}$, where H is the Hamiltonian of the 1D harmonic oscillator, namely $(H f)(x):=-f^{\prime \prime}(x)+x^{2} f(x)$ on the domain $\mathcal{D}=\left\{f \in L^{2}(\mathbb{R}) \mid-f^{\prime \prime}+x^{2} f \in L^{2}(\mathbb{R})\right\}$. Is τ_{t} asymptotically abelian?

- YES
32.3 With the usual meaning of the symbols from class and homework, consider the 1D Ising model at non-zero temperature T and with magnetic field B. Is it true that at the Renormalisation Group limit point one has $\left\langle S_{1} S_{2}\right\rangle=\left\langle S_{1}\right\rangle\left\langle S_{2}\right\rangle$?
- YES
32.4 With the usual meaning of the symbols from class and homework, consider the 3D Ising model. If you plot the logarithm of the spontaneous magnetization as a function of $\log \frac{\left(T-T_{c}\right)}{T_{c}}$ for T approaching T_{c} from below, do you get a straight line?
\square YES \square NO
32.5 Consider the spin- $\frac{1}{2} 2 \mathrm{D}$ Heisenberg model on \mathbb{Z}^{2} and, for every $L \in \mathbb{Z}$, consider the finite sub-lattice Λ_{L} consisting of the square of size L centred at the origin. Is it possible to find for every L a finite sub-lattice $\Lambda_{L}^{\prime} \supsetneq \Lambda_{L}$ and a configuration on the whole \mathbb{Z}^{2} with all spins up inside Λ_{L} and all spins down outside Λ_{L}^{\prime} such that $\lim _{L \rightarrow \infty} \mathcal{E}(L)$ is finite? $(\mathcal{E}(L):=$ energy of the configuration relative to the couple $\Lambda_{L}, \Lambda_{L}^{\prime}$.)
\square YES
- NO
32.6 Consider an "Ideal Bose Gas consisting of one-body harmonic oscillators", i.e., with respect to Fock-space discussion of the Ideal Bose Gas done in class and homework, assume that the one-body Hamiltonian is a harmonic oscillator of frequency ω. Does BEC occur in the limit $\omega \rightarrow 0$?
- YES $\square \mathrm{NO}$
32.7 Consider a process in which at each step t a particle jumps with probability $\frac{1}{3}$ from a corner of a given cube to one of the three neighbouring corners. Is this a Markov process that converges to a probability distribution in the limit $t \rightarrow \infty$?

\square YES \square NO

32.8 Let $p, q \in(0,1)$ such that $p+q<1$. Consider four sites S_{1}, S_{2}, S_{3}, and S_{4}, and a process in which at each step t a particle jumps from one site to another, say $S_{j} \rightarrow S_{k}$, with this prescription:

- $S_{j} \rightarrow S_{j}$ with probability $p(j=1,2,3,4)$,
- $S_{1} \rightarrow S_{2}$ or $S_{4} \rightarrow S_{3}$ with probability $1-p$,
- $S_{2} \rightarrow S_{1}$ or $S_{3} \rightarrow S_{4}$ with probability $1-p-q$,
- $S_{2} \rightarrow S_{3}$ or $S_{3} \rightarrow S_{2}$ with probability q.

According to what was discussed in class, this gives in fact a Markov process that converges to a limiting distribution ρ_{∞} (because of aperiodicity and irreducibility) and, if $\rho(t)$ is the distribution at time t, the displacement $\rho(t)-\rho_{\infty}$ vanishes as $e^{-\mu t}$ for some $\mu>0$. Is it true that $\mu=O(q)$ as $q \rightarrow 0$?
$\square \mathrm{YES} \square \mathrm{NO}$
32.9 Consider a C^{*}-dynamical system $\left(\mathcal{A}, \tau^{t}\right)$, a $\left(\tau^{t}, \beta\right)$-KMS state $\omega(\beta>0)$ on \mathcal{A}, and a *-automorphism α on \mathcal{A}. Is it true that, if ω is α-invariant, so is τ^{t} ?
\square YES \square NO
32.10 Consider the C^{*}-algebra $\mathcal{A}=\mathcal{M}(3 \times 3, \mathbb{C})$, the state $\rho=\left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4}\end{array}\right)$, a dynamics τ^{t} on \mathcal{A} such that ρ is a $\left(\tau^{t}, 1\right)$-KMS state, and the manifold

$$
\mathcal{M}_{\tau}:=\left\{\widetilde{\rho} \mid \widetilde{\rho} \text { is a state on } \mathcal{A} \text { and } \widetilde{\rho} \circ \tau^{t}=\widetilde{\rho} \forall t \in \mathbb{R}\right\}
$$

of all τ^{t}-invariant states on \mathcal{A}. Is it true that $\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{\tau}=4$?
$\square \mathrm{YES} \square \mathrm{NO}$

