TMP Programme Munich - spring term 2014

HOMEWORK ASSIGNMENT - WEEK 11 Hand-in deadline: Thursday 26 June by 12 p.m. in the "MSP" drop box. Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 30. (The lattice BCS model.)

Consider, among the class of quantum spin systems studied in Exercise 29 in the mean field regime, the special case of a one-dimensional spin- $\frac{1}{2}$ model where the Hamiltonian H_{Λ} is given, with respect to the notation of Exercise 29, by

$$d = 1, \quad s = \frac{1}{2}, \quad A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B = -\lambda(C^* \otimes C + C \otimes C^*), \quad C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \lambda \ge 0.$$

(i) Prove that a generic 2×2 density matrix ρ can be parametrised as follows:

$$\rho = \begin{pmatrix} \frac{1}{2} + r & \mu \\ \overline{\mu} & \frac{1}{2} - r \end{pmatrix}, \qquad r \in \mathbb{R}, \qquad \mu \in \mathbb{C}, \qquad r^2 + |\mu|^2 \leqslant \frac{1}{4}$$

- (ii) Compute the reduced Hamiltonian H_{ρ} of the model relative to a density matrix ρ parametrised as in (i).
- (iii) Compute $e^{-\beta H_{\rho}}, \beta > 0.$
- (iv) Write and solve the gap equation (see Exercise 29(ii)) for this model. Plot the parameter r and $|\mu|$ of the solutions as a function of β .
- (v) Which of the solutions found in (iv) actually maximises f_{β} ?

Exercise 31. (Application of RG: a quantum flute – or a bosonic string)

Consider a cigar-shaped tube of length π and assume that the pressure inside it can be modelled by a function p(t, x) of the time t and of the coordinate x along the tube. Consider the classical Hamiltonian

$$H = \int_0^{\pi} \mathrm{d}x \left(\left(\frac{\partial p}{\partial t} \right)^2 + \left(\frac{\partial p}{\partial x} \right)^2 \right)$$

(i) Assume Dirichlet boundary conditions $p(t, 0) = p(t, \pi) = 0$. Re-write H in terms of the Fourier transform of p(t, x) with respect to x and prove that H takes this way the form of an infinite sum of classical harmonic oscillators of mass $\frac{1}{2}$,

$$H = \sum_{k=1}^{\infty} h_k, \qquad h_k := \left(\frac{\mathrm{d}p_k}{\mathrm{d}t}\right)^2 + \omega_k p_k^2,$$

of which you have to specify the frequency ω_k .

- (ii) Consider the quantisation of the Hamiltonian H obtained in (i), consisting of the replacement of each mode p_k with the operator of multiplication times x_k and correspondingly of $\frac{dp_k}{dt}$ with the differential operator $-i\frac{\partial}{\partial x_k}$. Let E_k be the ground state energy of the harmonic oscillator h_k . Prove that $\sum_{k=1}^{\infty} E_k = +\infty$.
- (iii) To cure the divergence found in (ii), assume that H can be regularised to some H_{reg} in such a way that each harmonic oscillator h_k has a ground state damped by a factor e^{-a/λ_k} , where a is a reference distance (say, the typical inter-atomic distance) and λ_k is the wave length of the mode k. Correspondingly, consider $\widetilde{E} := \sum_{k=1}^{\infty} E_k e^{-a/\lambda_k}$. Prove the following asymptotics

$$\widetilde{E} \ = \ \frac{1}{a^2} - \frac{1}{12} + O(a) \qquad \text{as } a \to 0.$$

(iv) An immediate consequence of (iii) is that re-normalising $H_{\rm reg}$ by

$$H_{\rm reg} \ \mapsto \ H' \ := \ H_{\rm reg} - \int_0^{\pi} {\rm d}x \, {1\over a^2} \, ,$$

namely adding a contribution which is *p*-independent (thus, not affecting the equation of motion) and preserves locality, the ground state energy of H' stays finite as $a \to 0$. Discuss the value of this ground state in relation to the quantity $\zeta(-1)$, where ζ is the Riemann zeta function.

Exercise 32. For each of the 10 questions below answer YES or NO and provide a brief explanation.

32.1 Is there a unique KMS state for an infinite block of iron at room temperature?

□ YES □ NO

32.2 Consider the C^* -algebra $\mathcal{A} = \mathcal{L}(L^2(\mathbb{R}))$ and the time evolution $\tau_t(A) = e^{itH}Ae^{-itH}, t \in \mathbb{R}$, where H is the Hamiltonian of the 1D harmonic oscillator, namely $(Hf)(x) := -f''(x) + x^2 f(x)$ on the domain $\mathcal{D} = \{f \in L^2(\mathbb{R}) \mid -f'' + x^2 f \in L^2(\mathbb{R})\}$. Is τ_t asymptotically abelian?

□ YES □ NO

32.3 With the usual meaning of the symbols from class and homework, consider the 1D Ising model at non-zero temperature T and with magnetic field B. Is it true that at the Renormalisation Group limit point one has $\langle S_1 S_2 \rangle = \langle S_1 \rangle \langle S_2 \rangle$?

□ YES □ NO

32.4 With the usual meaning of the symbols from class and homework, consider the 3D Ising model. If you plot the logarithm of the spontaneous magnetization as a function of $\log \frac{(T-T_c)}{T_c}$ for T approaching T_c from below, do you get a straight line?

 \Box YES \Box NO

32.5 Consider the spin- $\frac{1}{2}$ 2D Heisenberg model on \mathbb{Z}^2 and, for every $L \in \mathbb{Z}$, consider the finite sub-lattice Λ_L consisting of the square of size L centred at the origin. Is it possible to find for every L a finite sub-lattice $\Lambda'_L \supseteq \Lambda_L$ and a configuration on the whole \mathbb{Z}^2 with all spins up inside Λ_L and all spins down outside Λ'_L such that $\lim_{L\to\infty} \mathcal{E}(L)$ is finite? ($\mathcal{E}(L) :=$ energy of the configuration relative to the couple Λ_L, Λ'_L .)

□ YES □ NO

32.6 Consider an "Ideal Bose Gas consisting of one-body harmonic oscillators", i.e., with respect to Fock-space discussion of the Ideal Bose Gas done in class and homework, assume that the one-body Hamiltonian is a harmonic oscillator of frequency ω . Does BEC occur in the limit $\omega \to 0$?

 \Box YES **D** NO

32.7 Consider a process in which at each step t a particle jumps with probability $\frac{1}{3}$ from a corner of a given cube to one of the three neighbouring corners. Is this a Markov process that converges to a probability distribution in the limit $t \to \infty$?

 \Box YES **D** NO

32.8 Let $p, q \in (0, 1)$ such that p + q < 1. Consider four sites S_1, S_2, S_3 , and S_4 , and a process in which at each step t a particle jumps from one site to another, say $S_j \to S_k$, with this prescription:

- $S_j \rightarrow S_j$ with probability p (j = 1, 2, 3, 4),
- $S_1 \to S_2$ or $S_4 \to S_3$ with probability 1 p,
- $S_2 \to S_1$ or $S_3 \to S_4$ with probability 1 p q,
- $S_2 \to S_3$ or $S_3 \to S_2$ with probability q.

According to what was discussed in class, this gives in fact a Markov process that converges to a limiting distribution ρ_{∞} (because of aperiodicity and irreducibility) and, if $\rho(t)$ is the distribution at time t, the displacement $\rho(t) - \rho_{\infty}$ vanishes as $e^{-\mu t}$ for some $\mu > 0$. Is it true that $\mu = O(q)$ as $q \to 0$?

 \Box YES **D** NO

32.9 Consider a C^{*}-dynamical system (\mathcal{A}, τ^t) , a (τ^t, β) -KMS state ω $(\beta > 0)$ on \mathcal{A} , and a *-automorphism α on \mathcal{A} . Is it true that, if ω is α -invariant, so is τ^t ?

 \Box YES **D** NO

32.10 Consider the C*-algebra $\mathcal{A} = \mathcal{M}(3 \times 3, \mathbb{C})$, the state $\rho = \begin{pmatrix} \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{4} & 0\\ 0 & 0 & \frac{1}{4} \end{pmatrix}$, a dynamics τ^t on \mathcal{A} such that ρ is a (τ^{t-1}) KMC state.

on \mathcal{A} such that ρ is a $(\tau^t, 1)$ -KMS state, and the manifold

$$\mathcal{M}_{\tau} := \left\{ \left. \widetilde{\rho} \right| \widetilde{\rho} \text{ is a state on } \mathcal{A} \text{ and } \widetilde{\rho} \circ \tau^{t} = \widetilde{\rho} \; \forall t \in \mathbb{R} \right. \right\}$$

of all τ^t -invariant states on \mathcal{A} . Is it true that $\dim_{\mathbb{R}} \mathcal{M}_{\tau} = 4$?

 \Box YES **D** NO