HOMEWORK ASSIGNMENT - WEEK 10

Hand-in deadline: Fri 20 June by 12 p.m. in the "MSP" drop box.
Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 27. (A theorem about matrices with positive entries.)
Define the following relation for finite-dimensional matrices (and vectors as a special case):

$$
\left(a_{i j}\right) \succ(\succeq) 0 \quad: \Leftrightarrow \quad a_{i j}>(\geq) 0 \quad \forall i, j
$$

and, correspondingly,

$$
\left(a_{i j}\right) \succ(\succeq)\left(b_{i j}\right) \quad: \Leftrightarrow \quad\left(a_{i j}\right)-\left(b_{i j}\right) \succ(\succeq) 0 .
$$

Let $n \in \mathbb{N}$ and let $A \in \mathcal{M}(n \times n, \mathbb{C})$ be such that $A \succ 0$.
(i) Prove that there exist $\lambda_{0}>0$ and $x_{0} \in \mathbb{R}^{n}, x_{0} \succ 0$, such that $A x_{0}=\lambda_{0} x_{0}$.
(Hint: One route you may take is to apply a suitable fixed point argument. Alternatively, you may define the set $\Lambda:=\{\mu \geq 0 \mid \exists x \succ 0$ such that $A x \succeq \mu x\}$ and find its supremum.)
(ii) Prove that if $\lambda \neq \lambda_{0}$ is a (possibly complex) eigenvalue of A, then $|\lambda|<\lambda_{0}$.
(iii) Prove that the eigenvalue λ_{0} is simple (i.e., its algebraic multiplicity is 1).

Exercise 28. (Application of Ex. 27: irreducible, aperiodic Markov processes.)
Consider a n-dimensional transition matrix P for a Markov process that is irreducible and aperiodic (according to the definitions given in class).
(i) Prove that there exists $t \in \mathbb{N}$ such that $P^{t} \succ 0$.
(ii) Prove that the eigenvalue λ_{0} of P^{t} determined by means of the theorem proved in Exercise 27 is actually $\lambda_{0}=1$.
(iii) Prove that for every $x \in \mathbb{R}^{n}$ such that $x \succ 0$ and $\sum_{i=1}^{n} x_{i}=1$ one has

$$
\left\|P^{n} x-x_{0}\right\|<C \mu^{n}
$$

for some constants $C>0$ and $\mu \in(0,1)$, where $\mathbb{R}^{n} \ni x_{0} \succ 0, P^{t} x_{0}=x_{0}$ (as in Exercise 27), whence in particular

$$
\lim _{n \rightarrow \infty} P^{n} x=x_{0}
$$

in the vector-norm sense. (In fact this holds also in the matrix-norm sense, because of the finite-dimensional setting.)

Exercise 29. (Mean field and the gap equation.)
Consider:

- a quantum spin system of spin-s particles on a finite lattice $\Lambda \subset \mathbb{Z}^{d}$ (thus, for each $x \in \Lambda$ the algebra $\mathcal{A}_{\{x\}}$ consists of the $n \times n$ matrices, $n=2 s+1 \geq 2$);
- a one-site self-adjoint matrix A, a two-site self-adjoint matrix B, and the Ising-type Hamiltonian

$$
H_{\Lambda}:=\sum_{x \in \Lambda} A_{x}+\sum_{\substack{x, y \in \Lambda,|x-y|=1}} B_{x y}
$$

where $A_{x} \in \mathcal{A}_{\{x\}}$ and $B_{x y} \in \mathcal{A}_{\{x, y\}}$ are copies, respectively, of A and B;

- a state $\omega_{(\rho)}$ on \mathcal{A}_{Λ} (customarily referred to as "product" or "mean field" state) whose density matrix is $\rho^{\otimes|\Lambda|}$, where ρ is a given one-site density matrix ρ;
- the free energy functional $F_{\beta}(\beta>0)$ given, on every state ω on \mathcal{A}_{Λ}, by

$$
F_{\beta}(\omega):=\frac{1}{\beta} S(\omega)-\omega\left(H_{\Lambda}\right)
$$

where $S(\omega)$ is the entropy of ω (see Exercise 17).
(i) Prove that the limit

$$
f_{\beta}(\rho):=\lim _{|\Lambda| \rightarrow \infty} \frac{1}{|\Lambda|} F_{\beta}\left(\omega_{(\rho)}\right)
$$

exists and can be written as

$$
f_{\beta}(\rho)=-\frac{1}{\beta} \operatorname{Tr}(\rho \ln \rho)-\operatorname{Tr}\left(\rho H_{\rho}\right)
$$

where

$$
H_{\rho}=A+d \cdot \operatorname{Tr}_{2}((\mathbb{1} \otimes \rho) B)
$$

Here Tr_{2} denotes the partial trace w.r.t. the second factor of $\mathcal{H}_{x y} \cong \mathbb{C}^{n} \otimes \mathbb{C}^{n}$. The limit $|\Lambda| \rightarrow \infty$ is meant to be, as usual in this context, a limit over an arbitrary sequence $\left(\Lambda_{N}\right)_{N=1}^{\infty}$ of finite lattices such that
$-\Lambda_{1} \subset \Lambda_{2} \subset \Lambda_{3} \subset \cdots,\left|\Lambda_{N}\right| \xrightarrow{N \rightarrow \infty} \infty$,
$-\left|\Lambda_{N}^{0}\right| /\left|\Lambda_{N}\right| \xrightarrow{N \rightarrow \infty} 1$, where $\left|\Lambda_{N}^{0}\right|=$ number of sites of Λ_{N} that are at a distance >1 away from the boundary of Λ_{N}.
(ii) Use the energy/entropy balance inequality to prove that any ρ that maximises $f_{\beta}(\rho)$ is a solution to

$$
\rho=\frac{e^{-\beta H_{\rho}}}{\operatorname{Tr}\left(e^{-\beta H_{\rho}}\right)} \quad \text { (the "gap equation"). }
$$

