Hand-in deadline: Thu 12 June by 12 p.m. in the "MSP" drop box.
Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 24. (Thermodynamic limit of a free Bose gas)
Consider

- a bounded open domain Λ in $\mathbb{R}^{d}, d \in \mathbb{N}$,
- the domains $\Lambda_{L}:=\left\{x \in \mathbb{R}^{d} \mid x / L \in \Lambda\right\}$, for every $L>0$,
- the free particle Hamilton operators $h_{L}=-\Delta$ on $L^{2}\left(\Lambda_{L}\right)$ with Dirichlet boundary conditions
and use the fact that the spectrum of h_{1} consists of a sequence of eigenvalues $0 \leq \varepsilon_{1}<\varepsilon_{2} \leq$ $\varepsilon_{3} \cdots$ accumulating at infinity according to the Weyl law:

$$
\lim _{\varepsilon \rightarrow \infty} \frac{N(\varepsilon)}{\varepsilon^{d / 2}}=\text { const }
$$

where $N(\varepsilon)$ is the number of eigenvalues smaller or equal to ε (for simplicity we assume $\varepsilon_{1}<\varepsilon_{2}$). In this problem and in the following you are asked to study, for $\beta>0,0<z \leqslant 1$, the quantity

$$
\rho_{L}(z, \beta):=\frac{1}{\left|\Lambda_{L}\right|} \operatorname{Tr} \frac{z e^{-\beta h_{L}}}{1-z e^{-\beta h_{L}}}
$$

when $L \rightarrow \infty$. To this aim, fix $\bar{\rho}>0$ and define z_{L} to be the unique solution to

$$
\bar{\rho}=\rho_{L}\left(z_{L}, \beta\right), \quad z_{L}:=e^{\beta \mu_{L}}, \quad \mu_{L}<h_{L}
$$

In terms of the eigenfunctions $\psi_{N}^{(L)}$ of h_{L}, namely, $h_{L} \psi_{N}^{(L)}=\varepsilon_{N}^{(L)} \psi_{N}^{(L)}, N=1,2,3, \ldots$, write

$$
\rho_{L}\left(z_{L}, \beta\right)=\sum_{N=1}^{\infty} \rho_{L}^{(N)}\left(z_{L}, \beta\right), \quad \rho_{L}^{(N)}\left(z_{L}, \beta\right):=\frac{1}{\left|\Lambda_{L}\right|}\left\langle\psi_{N}^{(L)}, \frac{z_{L} e^{-\beta h_{L}}}{1-z_{L} e^{-\beta h_{L}}} \psi_{N}^{(L)}\right\rangle
$$

and prove that

$$
\lim _{L \rightarrow \infty} \rho_{L}^{(N)}\left(z_{L}, \beta\right)=0 \quad \text { when } N>1
$$

Exercise 25. (Follow-up to Exercise 24)
With respect to the assumptions and notation of Exercise 24, prove that

$$
\lim _{L \rightarrow \infty} \sum_{n=2}^{\infty} \rho_{L}^{(n)}\left(z_{L}, \beta\right)=C<\infty
$$

where the constant C is independent of $\bar{\rho}$ (recall that in class it was claimed that the C amounts exactly to $\left.\rho_{c}(\beta)\right)$, and thus that

$$
\lim _{L \rightarrow \infty} \rho_{L}^{(1)}\left(z_{L}, \beta\right)>0
$$

Exercise 26. (Bose-Einstein statistics for Weyl's operators)
Recall that in class the KMS states for the free Bose gas were determined in terms of creation and annihilation operators. This required a regular representation. In this exercise you are asked to re-do the argument directly for the Weyl's operators, under the assumption that the state is quasi-free. To this aim, consider

- the one-particle Hilbert space \mathfrak{h},
- the one-particle Hamiltonian h on \mathfrak{h} such that $h>c \mathbb{1}$ for some $c>0$,
- the Weyl operator $W(f)$ as in class, and in particular $\tau^{t}(W(f))=W\left(e^{\mathrm{i} t h} f\right), t \in \mathbb{R}$,
- a $\left(\tau^{t}, \beta\right)$-KMS state $\omega(\beta>0)$ which is quasi-free and, correspondingly,

$$
\xi(t):=\omega\left(W(-f) \tau^{t} W(f)\right)
$$

Rewrite ξ as $\xi(t)=\omega(W(\eta)) F(\eta, t)$ for some $\eta \in \mathfrak{h}$ that depends on t and f and for some $F(\eta, t)$ that is analytic in t. Use the analytic continuation of F to complex-valued arguments to define

$$
\xi(\mathrm{i} \beta):=\omega(W(\eta)) F(\eta, \mathrm{i} \beta)
$$

and use the KMS condition to determine $\omega(W(\eta))$.

