TMP Programme Munich - spring term 2014

HOMEWORK ASSIGNMENT - WEEK 07 Hand-in deadline: Fri 30 May by 12 p.m. in the "MSP" drop box. Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 20. For this exercise you will need the following classical theorem by Paley and Wiener:

A measurable function F on \mathbb{R} is the inverse Fourier transform of a function $\hat{F} \in C_0^{\infty}(\mathbb{R})$ with support in [-R, R] (R > 0) if and only if the continuation of F to the complex plane is entire $e^{R|\Im m z|}$

analytic and for each $n \in \mathbb{N}$ there exists a constant C_n such that $|F(z)| \leq C_n \frac{e^{R|\Im m z|}}{(1+|z|)^n}$.

Let \mathcal{A} be a C^* -algebra with unit, $\{\tau_t \mid t \in \mathbb{R}\}$ be a one-parameter strongly continuous group of *-automorphisms of \mathcal{A} , and $\beta \in \mathbb{R}$. Prove that the following conditions are equivalent:

- (1) ω satisfies the (τ_t, β) -KMS condition,
- (2) the relation

$$\int_{-\infty}^{+\infty} \mathrm{d}t f(t) \,\omega(A\tau_t(B)) = \int_{-\infty}^{+\infty} \mathrm{d}t f(t+\mathrm{i}\beta) \,\omega(\tau_t(B)A)$$

is valid for all $A, B \in \mathcal{A}$ and all f with Fourier transform $\widehat{f} \in C_0^{\infty}(\mathbb{R})$.

Exercise 21. Let \mathcal{A} be a C^* -algebra with unit, $\{\tau_t | t \in \mathbb{R}\}$ be a one-parameter strongly continuous group of *-automorphisms of \mathcal{A} , and ω be an τ_t -invariant state, such that

- (1) τ_t is asymptotically abelian, i.e., $\lim_{t\to\infty} ||[A, \tau_t(B)]|| = 0 \quad \forall A, B \in \mathcal{A},$
- (2) ω has the "cluster property" $\omega(A\tau_t(B)) \xrightarrow{t \to \infty} \omega(A)\omega(B) \forall A, B \in \mathcal{A}$. (This is the typical property shown by KMS states with respect to an asymptotically abelian dynamics, although proving this fact is laborious.)

Consider a state ν that is ω -normal. Prove that ν "returns to equilibrium" in the sense that

$$\nu(\tau_t(A)) \xrightarrow{t \to \infty} \omega(A) \qquad \forall A \in \mathcal{A}$$

Exercise 22. Consider

- the quasi-local UHF algebra $(\mathcal{A}, (\mathcal{A}_{\Lambda})_{\Lambda \in \mathcal{F}(\mathbb{Z})})$ associated with an infinite quantum spin system on \mathbb{Z} with one-site Hilbert space $\mathcal{H}_x = \mathbb{C}^n$ $(n \in \mathbb{N} \text{ and } \mathcal{F}(\mathbb{Z}))$ is the collection of the finite subsets of \mathbb{Z}),
- the automorphism α that, locally, is defined by

$$\alpha(A) = \left(\bigotimes_{x \in \Lambda} U_x^*\right) A\left(\bigotimes_{x \in \Lambda} U_x\right) \qquad \forall A \in \mathcal{A}_\Lambda \qquad (\Lambda \in \mathcal{F}(\mathbb{Z})),$$

and is then extended by density on the whole \mathcal{A} , where each U_x is a unitary on \mathcal{H}_x ,

- an interaction $\Phi : \mathcal{F}(\mathbb{Z}^d) \to \mathcal{A}$ (recall from class: $\Phi(X) = \Phi(X)^* \in \mathcal{A}_X \ \forall X \in \mathcal{F}(\mathbb{Z})$) that
 - decreases at infinity in the sense that

$$\sup_{x \in \mathbb{Z}} \sum_{\substack{X \in \mathcal{F}(\mathbb{Z}) \\ X \ni x}} \operatorname{diam}(X) \| \Phi(X) \| < \infty \qquad \left(\operatorname{diam}(\Lambda) := \sup_{x, y \in \Lambda} |x - y| \right),$$

- is invariant under α , i.e., $\alpha(\Phi(X)) = \Phi(X) \ \forall X \in \mathcal{F}(\mathbb{Z}),$

• the corresponding one-parameter strongly continuous group $\{\tau_t \mid t \in \mathbb{R}\}$ of *-automorphisms of \mathcal{A} constructed, by similar arguments as in Exercises 18 and 19, as the limit of the local dynamics generated by the local Hamiltonians $H_{\Lambda} := \sum_{X \in \Lambda} \Phi(X)$; it satisfies $\tau_t \circ \alpha = \alpha \circ \tau_t$

for all $t \in \mathbb{R}$.

Prove that if ω is a (τ_t, β) -KMS state for some $\beta \in (0, +\infty)$, then

 $\omega \circ \alpha = \omega \quad \text{on } \mathcal{A}.$

(*Hint:* check the applicability of the theorem discussed in class in Section (iii)d.)

Exercise 23. For each of the 10 questions below answer YES or NO and provide a brief explanation.

23.1 If $X \subset \mathbb{R}$ is closed and the C^* -algebra $\mathcal{A} = C_0(X)$ contains the identity, is then X compact?

- \Box YES \Box NO
- **23.2** If $X \subset \mathbb{R}$ is compact, does then the C^* -algebra $\mathcal{A} = C_0(X)$ contains the identity? \Box YES \Box NO
- **23.3** Is there a representation π of the C^* -algebra $\mathcal{A} = \mathcal{M}(2, \mathbb{C})$ such that $\|\pi(\sigma_x)\| = 2$? \square YES \square NO
- **23.4** Is there a representation π of the C^* -algebra $\mathcal{A} = \mathcal{M}(2, \mathbb{C})$ such that $\|\pi(\sigma_z)\| = \frac{1}{2}$? \square YES \square NO
- **23.5** Consider the C*-algebra \mathcal{A} of 17×17 complex-valued matrices. Is $\omega(A) = \frac{1}{17} \sum_{i,j=1}^{17} A_{ij}$, $A = (A_{ij}) \in \mathcal{A}$, a state over \mathcal{A} ?
 - \Box YES \Box NO

23.6 Consider the C^* -algebra $\mathcal{A} = \mathbb{C} \oplus \mathcal{M}(2, \mathbb{C})$ (two-block diagonal matrices with blocks of size 1 and 2 respectively) and the vector $\mathbf{v} = \frac{1}{\sqrt{6}} {1 \choose 2}$. Does the map $M \mapsto \langle \mathbf{v}, M \mathbf{v} \rangle$ define a state on \mathcal{A} ?

 \Box YES \Box NO

23.7 Is the map $M \mapsto \langle \mathbf{v}, M \mathbf{v} \rangle$ defined in the previous question a pure state on \mathcal{A} ? **YES I** NO

23.8 Is the map $\omega : \mathcal{A}_{CCR}(\mathfrak{h}) \to \mathbb{C}$ defined by

$$\omega(W(f)) := \begin{cases} 1 & \text{if } f = 0\\ 0 & \text{if } f \neq 0 \end{cases}$$

and extended by linearity and density on the whole $\mathcal{A}_{CCR}(\mathfrak{h})$, a state?

 \Box YES \Box NO

23.9 Is the map defined in the previous question a regular state?

 \Box YES \Box NO

23.10 Concerning the global dynamics $\{\tau_t \mid t \in \mathbb{R}\}$ constructed in Exercises 18 and 19 on the quasi-local UHF algebra $(\mathcal{A}, (\mathcal{A}_\Lambda)_{\Lambda \in \mathcal{F}(\mathbb{Z}^d)})$ associated with an infinite quantum spin system, is there an element $H = H^* \in \mathcal{A}$ such that $\tau_t(A) = e^{itH}A e^{-itH} \forall A \in \mathcal{A}$?

 \Box YES \Box NO