Hand-in deadline: Fri 30 May by 12 p.m. in the "MSP" drop box.
Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 20. For this exercise you will need the following classical theorem by Paley and Wiener:
A measurable function F on \mathbb{R} is the inverse Fourier transform of a function $\widehat{F} \in C_{0}^{\infty}(\mathbb{R})$ with support in $[-R, R](R>0)$ if and only if the continuation of F to the complex plane is entire analytic and for each $n \in \mathbb{N}$ there exists a constant C_{n} such that $|F(z)| \leqslant C_{n} \frac{e^{R|\mathfrak{I m} z|}}{(1+|z|)^{n}}$.
Let \mathcal{A} be a C^{*}-algebra with unit, $\left\{\tau_{t} \mid t \in \mathbb{R}\right\}$ be a one-parameter strongly continuous group of $*$-automorphisms of \mathcal{A}, and $\beta \in \mathbb{R}$. Prove that the following conditions are equivalent:
(1) ω satisfies the $\left(\tau_{t}, \beta\right)$-KMS condition,
(2) the relation

$$
\int_{-\infty}^{+\infty} \mathrm{d} t f(t) \omega\left(A \tau_{t}(B)\right)=\int_{-\infty}^{+\infty} \mathrm{d} t f(t+\mathrm{i} \beta) \omega\left(\tau_{t}(B) A\right)
$$

is valid for all $A, B \in \mathcal{A}$ and all f with Fourier transform $\widehat{f} \in C_{0}^{\infty}(\mathbb{R})$.

Exercise 21. Let \mathcal{A} be a C^{*}-algebra with unit, $\left\{\tau_{t} \mid t \in \mathbb{R}\right\}$ be a one-parameter strongly continuous group of $*$-automorphisms of \mathcal{A}, and ω be an τ_{t}-invariant state, such that
(1) τ_{t} is asymptotically abelian, i.e., $\lim _{t \rightarrow \infty}\left\|\left[A, \tau_{t}(B)\right]\right\|=0 \quad \forall A, B \in \mathcal{A}$,
(2) ω has the "cluster property" $\omega\left(A \tau_{t}(B)\right) \xrightarrow{t \rightarrow \infty} \omega(A) \omega(B) \forall A, B \in \mathcal{A}$. (This is the typical property shown by KMS states with respect to an asymptotically abelian dynamics, although proving this fact is laborious.)

Consider a state ν that is ω-normal. Prove that ν "returns to equilibrium" in the sense that

$$
\nu\left(\tau_{t}(A)\right) \xrightarrow{t \rightarrow \infty} \omega(A) \quad \forall A \in \mathcal{A} .
$$

Exercise 22. Consider

- the quasi-local UHF algebra $\left(\mathcal{A},\left(\mathcal{A}_{\Lambda}\right)_{\Lambda \in \mathcal{F}(\mathbb{Z})}\right)$ associated with an infinite quantum spin system on \mathbb{Z} with one-site Hilbert space $\mathcal{H}_{x}=\mathbb{C}^{n}(n \in \mathbb{N}$ and $\mathcal{F}(\mathbb{Z})$ is the collection of the finite subsets of \mathbb{Z}),
- the automorphism α that, locally, is defined by

$$
\alpha(A)=\left(\bigotimes_{x \in \Lambda} U_{x}^{*}\right) A\left(\bigotimes_{x \in \Lambda} U_{x}\right) \quad \forall A \in \mathcal{A}_{\Lambda} \quad(\Lambda \in \mathcal{F}(\mathbb{Z}))
$$

and is then extended by density on the whole \mathcal{A}, where each U_{x} is a unitary on \mathcal{H}_{x},

- an interaction $\Phi: \mathcal{F}\left(\mathbb{Z}^{d}\right) \rightarrow \mathcal{A}$ (recall from class: $\left.\Phi(X)=\Phi(X)^{*} \in \mathcal{A}_{X} \forall X \in \mathcal{F}(\mathbb{Z})\right)$ that
- decreases at infinity in the sense that

$$
\sup _{x \in \mathbb{Z}} \sum_{\substack{X \in \mathcal{F}(\mathbb{Z}) \\ X \ni x}} \operatorname{diam}(X)\|\Phi(X)\|<\infty \quad\left(\operatorname{diam}(\Lambda):=\sup _{x, y \in \Lambda}|x-y|\right)
$$

- is invariant under α, i.e., $\alpha(\Phi(X))=\Phi(X) \forall X \in \mathcal{F}(\mathbb{Z})$,
- the corresponding one-parameter strongly continuous group $\left\{\tau_{t} \mid t \in \mathbb{R}\right\}$ of $*$-automorphisms of \mathcal{A} constructed, by similar arguments as in Exercises 18 and 19, as the limit of the local dynamics generated by the local Hamiltonians $H_{\Lambda}:=\sum_{X \subset \Lambda} \Phi(X)$; it satisfies $\tau_{t} \circ \alpha=\alpha \circ \tau_{t}$ for all $t \in \mathbb{R}$.
Prove that if ω is a $\left(\tau_{t}, \beta\right)$-KMS state for some $\beta \in(0,+\infty)$, then

$$
\omega \circ \alpha=\omega \quad \text { on } \mathcal{A} .
$$

(Hint: check the applicability of the theorem discussed in class in Section (iii)d.)

Exercise 23. For each of the 10 questions below answer YES or NO and provide a brief explanation.
23.1 If $X \subset \mathbb{R}$ is closed and the C^{*}-algebra $\mathcal{A}=C_{0}(X)$ contains the identity, is then X compact?
$\square \mathrm{YES} \square \mathrm{NO}$
23.2 If $X \subset \mathbb{R}$ is compact, does then the C^{*}-algebra $\mathcal{A}=C_{0}(X)$ contains the identity?
$\square \mathrm{YES} \square \mathrm{NO}$
23.3 Is there a representation π of the C^{*}-algebra $\mathcal{A}=\mathcal{M}(2, \mathbb{C})$ such that $\left\|\pi\left(\sigma_{x}\right)\right\|=2$?
\square YES \square NO
23.4 Is there a representation π of the C^{*}-algebra $\mathcal{A}=\mathcal{M}(2, \mathbb{C})$ such that $\left\|\pi\left(\sigma_{z}\right)\right\|=\frac{1}{2}$?

- YES - NO
23.5 Consider the C^{*}-algebra \mathcal{A} of 17×17 complex-valued matrices. Is $\omega(A)=\frac{1}{17} \sum_{i, j=1}^{17} A_{i j}$, $A=\left(A_{i j}\right) \in \mathcal{A}$, a state over \mathcal{A} ?
$\square \mathrm{YES} \square \mathrm{NO}$
23.6 Consider the C^{*}-algebra $\mathcal{A}=\mathbb{C} \oplus \mathcal{M}(2, \mathbb{C})$ (two-block diagonal matrices with blocks of size 1 and 2 respectively) and the vector $\mathbf{v}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$. Does the map $M \mapsto\langle\mathbf{v}, M \mathbf{v}\rangle$ define a state on \mathcal{A} ?
$\square \mathrm{YES} \square \mathrm{NO}$
23.7 Is the map $M \mapsto\langle\mathbf{v}, M \mathbf{v}\rangle$ defined in the previous question a pure state on \mathcal{A} ?
\square YES \square NO
23.8 Is the map $\omega: \mathcal{A}_{\mathrm{CCR}}(\mathfrak{h}) \rightarrow \mathbb{C}$ defined by

$$
\omega(W(f)):= \begin{cases}1 & \text { if } f=0 \\ 0 & \text { if } f \neq 0\end{cases}
$$

and extended by linearity and density on the whole $\mathcal{A}_{\mathrm{CCR}}(\mathfrak{h})$, a state?
\square YES \square NO
23.9 Is the map defined in the previous question a regular state?
\square YES \square NO
23.10 Concerning the global dynamics $\left\{\tau_{t} \mid t \in \mathbb{R}\right\}$ constructed in Exercises 18 and 19 on the quasi-local UHF algebra $\left(\mathcal{A},\left(\mathcal{A}_{\Lambda}\right)_{\Lambda \in \mathcal{F}\left(\mathbb{Z}^{d}\right)}\right)$ associated with an infinite quantum spin system, is there an element $H=H^{*} \in \mathcal{A}$ such that $\tau_{t}(A)=e^{\mathrm{i} t H} A e^{-\mathrm{i} t H} \forall A \in \mathcal{A}$?
\square YES
$\square \mathrm{NO}$

