TMP Programme Munich - spring term 2014

HOMEWORK ASSIGNMENT – WEEK 06

Hand-in deadline: Thu 22 May by 12 p.m. in the "MSP" drop box.

Rules: Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.

Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 17.

Consider the Hilbert space $\mathcal{H} = \mathbb{C}^n$ $(n \in \mathbb{N})$ and the C^* -algebra $\mathcal{A} = \mathcal{M}(n, \mathbb{C})$.

(i) Let $A, B \in \mathcal{A}$ be such that $A > \mathbb{O}$ and $B > \mathbb{O}$, and let $f \in C^1((0, +\infty), \mathbb{R})$ be convex. Prove that

$$\operatorname{Tr}(f(A) - f(B) - (A - B)f'(B)) \ge 0$$

and prove that if furthermore f is strictly convex then the "=" sign in the above inequality holds if and only if A = B.

(ii) Given $\beta > 0$, $H = H^* \in \mathcal{A}$, ad a state ω on \mathcal{A} , define

$$F_{\beta}(\omega) := \frac{1}{\beta}S(\omega) - \omega(H)$$

where $S(\omega)$ is the entropy of ω . Prove that $F_{\beta}(\omega)$ has a unique maximiser over the set of states on \mathcal{A} given precisely by the Gibbs state at inverse temperature β , i.e., the state $\omega_{\rho_{\beta H}}$ defined by

$$\rho_{\beta H} := \frac{\mathrm{e}^{-\beta H}}{\mathrm{Tr} \left(\mathrm{e}^{-\beta H}\right)}$$

Compute $F_{\beta}(\omega_{\rho_{\beta H}})$.

(*Hint:* Prove that $F_{\beta}(\omega_{\rho}) = \frac{1}{\beta} \log \operatorname{Tr} \left(e^{-\beta H} \right) - \frac{1}{\beta} \operatorname{Tr} \left(\rho \log \rho - \rho \log \rho_{\beta H} \right)$ and use (i) with the popular choice $f(t) = t \ln t$.)

(iii) Given $H = H^* \in \mathcal{A}$ consider the one-parameter group $\{\alpha_t \mid t \in \mathbb{R}\}$ of *-automorphisms $A \mapsto \alpha_t(A) := e^{itH} A e^{-itH}$ of \mathcal{A} , and let ω be a state on \mathcal{A} and $\beta \in \mathbb{R}$. Prove that ω is a (α_t, β) -KMS state *if and only if* $\omega = \omega_{\rho_{\beta H}}$, the Gibbs state at inverse temperature β .

Exercise 18. Consider

• the quasi-local UHF algebra $(\mathcal{A}, (\mathcal{A}_{\Lambda})_{\Lambda \in \mathcal{F}(\mathbb{Z}^d)})$ associated with an infinite quantum spin system on \mathbb{Z}^d $(d \in \mathbb{N}, \mathcal{F}(\mathbb{Z}^d))$ is the collection of the finite subsets of \mathbb{Z}^d ,

• an interaction $\Phi: \mathcal{F}(\mathbb{Z}^d) \to \mathcal{A}$ that is bounded, in the sense that

$$\|\Phi\| := \sup_{\substack{x \in \mathbb{Z}^d \\ \Lambda \in \mathcal{F}(\mathbb{Z}^d) \\ \Lambda \ni x}} \|\Phi(\Lambda)\| < \infty,$$

and has a finite range, in the sense that $\exists R_{\Phi} \ge 1$ such that $\Phi(\Lambda) = \mathbb{O}$ if diam $(\Lambda) > R_{\Phi}$, where diam $(\Lambda) := \sup_{x,y \in \Lambda} |x - y|$,

• the collection $(H_{\Lambda})_{\Lambda \in \mathcal{F}(\mathbb{Z}^d)}$ of local Hamiltonians $H_{\Lambda} := \sum_{X \subset \Lambda} \Phi(X)$.

(i) Let $A \in \mathcal{A}_{\text{loc}} := \bigcup_{\Lambda \in \mathcal{F}(\mathbb{Z}^d)} \mathcal{A}_{\Lambda}$. Prove that the limit

$$\delta(A) := \lim_{\substack{\Lambda \to \infty \\ \Lambda \in \mathcal{F}(\mathbb{Z}^d)}} i \left[H_{\Lambda}, A \right]$$

exists in \mathcal{A}_{loc} and defines a symmetric derivation with domain $\mathcal{D}(\delta) = \mathcal{A}_{\text{loc}}$ such that $\delta(\mathcal{D}(\delta)) \subset \mathcal{D}(\delta)$. (The limit $\Lambda \to \infty$ is meant as follows: for every sequence $\Lambda_1 \subset \Lambda_2 \subset \cdots$ in $\mathcal{F}(\mathbb{Z}^d)$ such that $\bigcup_{n=1}^{\infty} \Lambda_n = \mathbb{Z}^d$, $\lim_{n\to\infty} i[H_{\Lambda_n}, A]$ converges and is independent of the choice of the sequence.)

(ii) Prove that for every $A \in \mathcal{A}_{loc}$ and for sufficiently small $t \in \mathbb{R}$ the series

$$\alpha_t(A) \equiv e^{t\delta}(A) := \sum_{n=0}^{\infty} \frac{t^n}{n!} \delta^n(A)$$

is norm-convergent in \mathcal{A} and therefore the function $t \mapsto e^{t\delta}(A)$ is analytic.

(*Hint:* argue that $\delta^n(A) \in \mathcal{A}_{\text{loc}}$ and find a control $\|\delta^n(A)\| \leq c(n, \|\Phi\|) \|A\|$ by estimating conveniently all commutators; the inequality $a^n \leq n! b^{-n} e^{ab}$ $(a, b > 0, n \in \mathbb{N})$ may be useful.)

Exercise 19. (Follow-up to Exercise 18)

(i) Prove that the map $\alpha_t : \mathcal{A}_{\text{loc}} \to \mathcal{A}$ satisfies, $\forall A, B \in \mathcal{A}_{\text{loc}}, \forall a, b \in \mathbb{C}, \forall t \in \mathbb{R}$, the properties

$$\alpha_t(aA + bB) = a\alpha_t(A) + b\alpha_t(B)$$

$$\alpha_t(AB) = \alpha_t(A)\alpha_t(B)$$

$$\alpha_t(1) = 1$$

$$\alpha_t(A^*) = \alpha_t(A)^*.$$

(ii) For every $A \in \mathcal{A}_{\text{loc}}$ and every $t \in \mathbb{R}$ define $\alpha_t^{\Lambda}(A) := e^{itH_{\Lambda}}A e^{-itH_{\Lambda}}$. Prove that, for sufficiently small $t \in \mathbb{R}$, one has

$$\lim_{\substack{\Lambda \to \infty \\ \Lambda \in \mathcal{F}(\mathbb{Z}^d)}} \|\alpha_t^{\Lambda}(A) - \alpha_t(A)\| = 0.$$

(iii) Prove that, for sufficiently small $t \in \mathbb{R}$, the map $\alpha_t : \mathcal{A}_{\text{loc}} \to \mathcal{A}$ extends to a *-automorphism $\alpha_t : \mathcal{A} \to \mathcal{A}$.